Cloud Programming Simplified: A Berkeley View on

.
H
H
E,
=
-
.-
=
=

Serverless Computing

Eric Jonas

Johann Schleier-Smith
Vikram Sreekanti
Chia-Che Tsai

Anurag Khandelwal
Qifan Pu

Vaishaal Shankar

Joao Menezes Carreira
Karl Krauth

Neeraja Yadwadkar
Joseph Gonzalez
Raluca Ada Popa

lon Stoica

David A. Patterson

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-3
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html

February 10, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The sponsors of the RISELab are Alibaba Group, Amazon Web Services, Ant
Financial, Arm Holdings, Capital One, Ericsson, Facebook, Google, Huawei,
Intel, Microsoft, Scotiabank, Splunk, VMware, and the National Science
Foundation.

Cloud Programming Simplified:
A Berkeley View on Serverless Computing

Eric Jonas Johann Schleier-Smith ~ Vikram Sreekanti Chia-Che Tsai
Anurag Khandelwal Qifan Pu Vaishaal Shankar Joao Carreira
Karl Krauth Neeraja Yadwadkar Joseph E. Gonzalez Raluca Ada Popa
Ion Stoica David A. Patterson

UC Berkeley

serverlessview@berkeley.edu

Abstract

Serverless cloud computing handles virtually all the system administration operations needed to make it
easier for programmers to use the cloud. It provides an interface that greatly simplifies cloud programming,
and represents an evolution that parallels the transition from assembly language to high-level programming
languages. This paper gives a quick history of cloud computing, including an accounting of the predictions
of the 2009 Berkeley View of Cloud Computing paper, explains the motivation for serverless computing,
describes applications that stretch the current limits of serverless, and then lists obstacles and research
opportunities required for serverless computing to fulfill its full potential. Just as the 2009 paper identified
challenges for the cloud and predicted they would be addressed and that cloud use would accelerate, we
predict these issues are solvable and that serverless computing will grow to dominate the future of cloud

computing.
Contents
(1 Introduction to Serverless Computing|
2 Emergence of Serverless Computing|
2.1 Contextualizing Serverless Computing]
[2.2 Attractiveness of Serverless Computing|. Lo oL
[3 Limitations of Today’s Serverless Computing Platforms|
13.1 Inadequate storage for fine-grained operations|
3.2 Lack of fine-grained coordination|
[3.3 Poor performance for standard communication patterns|
3.4 Predictable Performancel e
[4 What Serverless Computing Should Become
4.1 Abstraction challenges| o
4.2 System challenges|.
4.3 Networking challenges|
4.4 Security challenges|
4.5 Computer architecture challenges|
5 Fallag [Pifall

12
12
13
14

15
15
16
18
18
19

20

[6 Summary and Predictions| 21

[7 Acknowledgements| 23
[8 Appendix. More Depth on Five Applications that Stretch Today’s Serverless |
[Computing| 29
8.1 ExCamera: Video encoding in real-time| 29
8.2 MapReduce| 29
[8.3 Numpywren: Linear algebral o0 0o 30
8.4 Cirrus: Machine learning training| 0oL 32
8.5 Serverless SQLite: Databases| Lo 32

1 Introduction to Serverless Computing

The data center is now the computer.

Luiz Barroso (2007) [1]

In 2009, to help explain the excitement around cloud computing, “The Berkeley View on Cloud
Computing” (2] identified six potential advantages:

The appearance of infinite computing resources on demand.

The elimination of an up-front commitment by cloud users.

The ability to pay for use of computing resources on a short-term basis as needed.
Economies of scale that significantly reduced cost due to many, very large data centers.
Simplifying operation and increasing utilization via resource virtualization.

Higher hardware utilization by multiplexing workloads from different organizations.

SR

The past ten years have seen these advantages largely realized, but cloud users continue to bear a
burden from complex operations and many workloads still do not benefit from efficient multiplexing.
These shortfalls mostly correspond to failures to realize the last two potential advantages. Cloud
computing relieved users of physical infrastructure management but left them with a proliferation of
virtual resources to manage. Multiplexing worked well for batch style workloads such as MapReduce
or high performance computing, which could fully utilize the instances they allocated. It worked
less well for stateful services, such as when porting enterprise software like a database management
system to the cloud]T]

In 2009, there were two competing approaches to virtualization in the cloud. As the paper
explained:

Amazon EC2 is at one end of the spectrum. An EC2 instance looks much like physical
hardware, and users can control nearly the entire software stack, from the kernel upward.

. At the other extreme of the spectrum are application domain-specific platforms such
as Google App Engine ... enforcing an application structure of clean separation between a
stateless computation tier and a stateful storage tier. App Engine’s impressive automatic
scaling and high-availability mechanisms ... rely on these constraints.

The marketplace eventually embraced Amazon’s low-level virtual machine approach to cloud com-
puting, so Google, Microsoft and other cloud companies offered similar interfaces. We believe the
main reason for the success of low-level virtual machines was that in the early days of cloud com-
puting users wanted to recreate the same computing environment in the cloud that they had on
their local computers to simplify porting their workloads to the cloud [3-H6]. That practical need,
sensibly enough, took priority over writing new programs solely for the cloud, especially as it was
unclear how successful the cloud would be.

The downside of this choice was that developers had to manage virtual machines themselves,
basically either by becoming system administrators or by working with them to set up environments.
Table [1] lists the issues that must be managed to operate an environment in the cloud. The
long list of low-level virtual machine management responsibilities inspired customers with simpler
applications to ask for an easier path to the cloud for new applications. For example, suppose

'Due to the tight coupling between computation and storage, databases need to reserve instances long term. However,
their workloads can be bursty, which results in low resource utilization.

Redundancy for availability, so that a single machine failure doesn’t take down the service.
Geographic distribution of redundant copies to preserve the service in case of disaster.
Load balancing and request routing to efficiently utilize resources.

Autoscaling in response to changes in load to scale up or down the system.

Monitoring to make sure the service is still running well.

Logging to record messages needed for debugging or performance tuning.

System upgrades, including security patching.

Migration to new instances as they become available.

O NSOt W=

Table 1: Eight issues to be addressed in setting up an environment for cloud users. Some issues
take many steps. For example, autoscaling requires determining the need to scale; picking the type
and number of servers to use; requesting the servers; waiting for them to come online; configuring
them with the application; confirming that no errors occurred; instrumenting them with monitoring
tools; and sending traffic at them to test them.

the application wanted to send images from a phone application to the cloud, which should create
thumbnail images and then place them on the web. The code to accomplish these tasks might be
dozens of lines of JavaScript, which would be a trivial amount of development compared to what
it takes to set up the servers with the proper environment to run the code.

Recognition of these needs led to a new option from Amazon in 2015 called the AWS Lambda
service. Lambda offered cloud functions, and drew widespread attention to serverless comput-
ing. Although serverless computing is arguably an oxymoron—you are still using servers to com-
pute—the name presumably stuck because it suggests that the cloud user simply writes the code
and leaves all the server provisioning and administration tasks to the cloud provider. While cloud
functions—packaged as FaaS (Function as a Service) oﬁ’ering%represent the core of serverless
computing, cloud platforms also provide specialized serverless frameworks that cater to specific
application requirements as BaaS (Backend as a Service) offerings [7]. Put simply, serverless com-
puting = FaaS + BaaSE| In our definition, for a service to be considered serverless, it must scale
automatically with no need for explicit provisioning, and be billed based on usage. In the rest of
this paper, we focus on the emergence, evolution, and future of cloud functions. Cloud functions
are the general purpose element in serverless computing today, and lead the way to a simplified
and general purpose programming model for the cloud.

We next motivate and define serverless computing. Like the original Berkeley View paper on
cloud computing, we then list challenges and research opportunities to be addressed for serverless
computing to fulfill its promise. While we are unsure which solutions will win, we believe all issues
will all be addressed eventually, thereby enabling serverless computing to become the face of cloud
computing.

Different cloud platforms have different names for their FaaS offerings—AWS Lambda for Amazon Web Services
(AWS), Google Cloud Functions for Google Cloud Platform, IBM Cloud Functions for IBM Cloud, and Azure
Functions for Microsoft Azure. They all have similar features, and we refer to them as cloud functions or FaaS
offerings interchangeably in this paper.

3Baa$ originated as a term describing mobile-centric cloud frameworks and has grown to encompass any application-
specific serverless cloud service, such as serverless databases and serverless big data processing frameworks.

2 Emergence of Serverless Computing

In any serverless platform, the user just writes a cloud function in a high-level language, picks the
event that should trigger the running of the function—such as loading an image into cloud storage
or adding an image thumbnail to a database table—and lets the serverless system handle everything
else: instance selection, scaling, deployment, fault tolerance, monitoring, logging, security patches,
and so on. Table [2| summarizes the differences between serverless and the traditional approach,
which we’ll call serverful cloud computing in this paper. Note that these two approaches repre-
sent the endpoints of a continuum of function-based/server-centered computing platforms, with
containerized orchestration frameworks like Kubernetes representing intermediates.

Characteristic AWS Serverless Cloud AWS Serverful Cloud
When the program is run On event selected by Cloud user Continuously until explicitly stopped
% Programming Language JavaScript, Python, Java, Go, C#, CtCH Any
S | Program State Kept in storage (stateless) Anywhere (stateful or stateless)
5 Maximum Memory Size 0.125 - 3 GiB (Cloud user selects) 0.5 - 1952 GiB (Cloud user selects)
g Maximum Local Storage 0.5 GiB 0 - 3600 GiB (Cloud user selects)
8 Maximum Run Time 900 seconds None
A~ Minimum Accounting Unit 0.1 seconds 60 seconds
Price per Accounting Unit $0.0000002 (assuming 0.125 GiB) $0.0000867 - $0.4080000
Operating System & Libraries | Cloud provider selectﬂ Cloud user selects
Server Instance Cloud provider selects Cloud user selects
é Scalindﬁl Cloud provider responsible Cloud user responsible
S Deployment Cloud provider responsible Cloud user responsible
g Fault Tolerance Cloud provider responsible Cloud user responsible
5; Monitoring Cloud provider responsible Cloud user responsible
Logging Cloud provider responsible Cloud user responsible

Table 2: Characteristics of serverless cloud functions vs. serverful cloud VMs divided into program-
ming and system administration categories. Specifications and prices correspond to AWS Lambda
and to on-demand AWS EC2 instances.

Figure|l|illustrates how serverless simplifies application development by making cloud resources
easier to use. In the cloud context, serverful computing is like programming in low-level assembly
language whereas serverless computing is like programming in a higher-level language such as
Python. An assembly language programmer computing a simple expression such as ¢ = a + b
must select one or more registers to use, load the values into those registers, perform the arithmetic,
and then store the result. This mirrors several of the steps of serverful cloud programming, where
one first provisions resources or identifies available ones, then loads those resources with necessary
code and data, performs the computation, returns or stores the results, and eventually manages
resource release. The aim and opportunity in serverless computing is to give cloud programmers
benefits similar to those in the transition to high-level programming languagesm Other features
of high-level programming environments have natural parallels in serverless computing as well.
Automated memory management relieves programmers from managing memory resources, whereas
serverless computing relieves programmers from managing server resources.

Put precisely, there are three critical distinctions between serverless and serverful computing;:

" Although several serverless computing providers run binary programs in addition to high-level language programs,
we believe the greatest upside potential for serverless is using high-level languages.

1. Decoupled computation and storage. The storage and computation scale separately and are
provisioned and priced independently. In general, the storage is provided by a separate cloud
service and the computation is stateless.

2. FEzxecuting code without managing resource allocation. Instead of requesting resources, the
user provides a piece of code and the cloud automatically provisions resources to execute that
code.

3. Paying in proportion to resources used instead of for resources allocated. Billing is by some
dimension associated with the execution, such as execution time, rather than by a dimension
of the base cloud platform, such as size and number of VMs allocated.

Using these distinctions, we next explain how serverless differs from similar offerings, both past
and current.

o EventData | | . coor o
Applications i :
pp Web APls Processing | | Future Serverless Applications 5
Cloud Object Key-Value Mobile Backend
Functions Storage Database Database
c Serverless | —— — - — - —
% Big Data Big Data Messaain i Future Serverless
8 Query Transform 9INI |1 Cloud Services
Z N e
<
o
pfl Base Cloud VM VPC e IAM Billing | | Monitoring
2 Platform Storage
)
a
Hardware Server Network Storage Accelerator

Figure 1: Architecture of the serverless cloud. The serverless layer sits between applications and the
base cloud platform, simplifying cloud programming. Cloud functions (i.e., FaaS) provide general
compute and are complemented by an ecosystem of specialized Backend as a Service (BaaS) offerings
such as object storage, databases, or messaging. Specifically, a serverless application on AWS might
use Lambda with S3 (object storage) and DynamoDB (key-value database), while an application
on Google’s cloud might use Cloud Functions with Cloud Firestore (mobile backend database)
and Cloud Pub/Sub (messaging). Serverless also comprises certain big data services such as AWS
Athena and Google BigQuery (big data query), and Google Cloud Dataflow and AWS Glue (big
data transform). The base underlying base cloud platform includes virtual machines (VM), private
networks (VPC), virtualized block storage, Identity and Access Management (IAM), as well as
billing and monitoring.

2.1 Contextualizing Serverless Computing

What technical breakthroughs were needed to make serverless computing possible? Some have
argued that serverless computing is merely a rebranding of preceding offerings, perhaps a modest

generalization of Platform as a Service (PaaS) cloud products such as Heroku [8], Firebase [9],
or Parse [10]. Others might point out that the shared web hosting environments popular in the
1990s provided much of what serverless computing has to offer. For example, these had a stateless
programming model allowing high levels of multi-tenancy, elastic response to variable demand, and
a standardized function invocation API, the Common Gateway Interface (CGI) [11], which even
allowed direct deployment of source code written in high-level languages such as Perl or PHP.
Google’s original App Engine, largely rebuffed by the market just a few years before serverless
computing gained in popularity, also allowed developers to deploy code while leaving most aspects of
operations to the cloud provider. We believe serverless computing represents significant innovation
over PaaS and other previous models.

Today’s serverless computing with cloud functions differs from its predecessors in several essen-
tial ways: better autoscaling, strong isolation, platform flexibility, and service ecosystem support.
Among these factors, the autoscaling offered by AWS Lambda marked a striking departure from
what came before. It tracked load with much greater fidelity than serverful autoscaling techniques,
responding quickly to scale up when needed and scaling all the way down to zero resources, and zero
cost, in the absence of demand. It charged in a much more fine-grained way, providing a minimum
billing increment of 100 ms at a time when other autoscaling services charged by the hourﬁ In a
critical departure, it charged the customer for the time their code was actually executing, not for
the resources reserved to execute their program. This distinction ensured the cloud provider had
“skin in the game” on autoscaling, and consequently provided incentives to ensure efficient resource
allocation.

Serverless computing relies on strong performance and security isolation to make multi-tenant
hardware sharing possible. VM-like isolation is the current standard for multi-tenant hardware
sharing for cloud functions [12], but because VM provisioning can take many seconds serverless
computing providers use elaborate techniques to speed up the creation of function execution envi-
ronments. One approach, reflected in AWS Lambda, is maintaining a “warm pool” of VM instances
that need only be assigned to a tenant, and an “active pool” of instances that have been used to
run a function before and are maintained to serve future invocations [13]. The resource lifecycle
management and multi-tenant bin packing necessary to achieve high utilization are key technical
enablers of serverless computing. We note that several recent proposals aim to reduce the overhead
of providing multi-tenant isolation by leveraging containers, unikernels, library OSes, or language
VMs. For example, Google has announced that gVisor [14] has already been adopted by App
Engine, Cloud Functions, and Cloud ML Engine, Amazon released Firecracker VMs [15] for AWS
Lambda and AWS Fargate, and the CloudFlare Workers serverless platform provides multi-tenant
isolation between JavaScript cloud functions using web browser sandboxing technology [16].

Several other distinctions have helped serverless computing succeed. By allowing users to bring
their own libraries, serverless computing can support a much broader range of applications than
PaaS services which are tied closely to particular use cases. Serverless computing runs in modern
data centers and operates at much greater scale than the old shared web hosting environments.

As mentioned in Section [l cloud functions (i.e., FaaS) popularized the serverless paradigm.
However, it is worth acknowledging that they owe their success in part to BaaS offerings that have
existed since the beginning of public clouds, services like AWS S3. In our view, these services
are domain-specific, highly optimized implementations of serverless computing. Cloud functions
represent serverless computing in a more general form. We summarize this view in Table [3| by
comparing programming interfaces and cost models for several services.

A common question when discussing serverless computing is how it relates to Kubernetes [17],

8Compare for example, AWS Elastic Beanstalk or Google App Engine.

Service Programming Interface Cost Model

Cloud Functions Arbitrary code Function execution time
BigQuery/Athena | SQL-like query The amount of data scanned by the query
DynamoDB puts() and gets() Per put() or get() request + storage

SQS enqueue/dequeue events | per-API call

Table 3: Examples of serverless computing services and their corresponding programming interfaces
and cost models. Note that for the serverless compute offerings described here: BigQuery, Athena,
and cloud functions, the user pays separately for storage (e.g., in Google Cloud Storage, AWS S3,
or Azure Blob Storage).

a “container orchestration” technology for deploying microservices. Unlike serverless computing,
Kubernetes is a technology that simplifies management of serverful computing. Derived from years
of development for Google’s internal use [18], it is gaining rapid adoption. Kubernetes can provide
short-lived computing environments, like serverless computing, and has far fewer limitations, e.g.,
on hardware resources, execution time, and network communication. It can also deploy software
originally developed for on-premise use completely on the public cloud with little modification.
Serverless computing, on the other hand, introduces a paradigm shift that allows fully offloading
operational responsibilities to the provider, and makes possible fine-grained multi-tenant multiplex-
ing. Hosted Kubernetes offerings, such as the Google Kubernetes Engine (GKE) and AWS Elastic
Kubernetes Service (EKS) offer a middle ground in this continuum: they offload operational man-
agement of Kubernetes while giving developers the flexibility to configure arbitrary containers. One
key difference between hosted Kubernetes services and serverless computing is the billing model.
The former charges per reserved resources, whereas the latter per function execution duration.

Kubernetes is also a perfect match to hybrid applications where a portion runs on-premise on
local hardware and a portion runs in the cloud. Our view is that such hybrid applications make
sense in the transition to the cloud. In the long term, however, we believe the economies of cloud
scale, faster network bandwidth, increasing cloud services, and simplification of cloud management
via serverless computing will diminish the importance of such hybrid applications.

Edge computing is the partner of cloud computing in the PostPC Era, and while we focus here
on how serverless computing will transform programming within the data center, there is interesting
potential for impact at the edge as well. Several Content Delivery Network (CDN) operators offers
the ability to execute a serverless functions in facilities close to users |19}20], wherever they might
be, and AWS IoT Greengrass [21] can even embed serverless execution in edge devices.

Now that we’ve defined and contextualized serverless computing, let’s see why it is attractive
to cloud providers, cloud users, and researchers.

2.2 Attractiveness of Serverless Computing

For cloud providers serverless computing promotes business growth, as making the cloud easier
to program helps draw in new customers and helps existing customers make more use of cloud
offerings. For example, recent surveys found that about 24% of serverless users were new to cloud
computing [22] and 30% of existing serverful cloud customers also used serverless computing [23].
In addition, the short run time, small memory footprint, and stateless nature improve statistical
multiplexing by making it easier for cloud providers to find unused resources on which to run these
tasks. The cloud providers can also utilize less popular computers—as the instance type is up to

Percent | Use Case

32% Web and API serving

21% Data Processing, e.g., batch ETL (database Extract, Transform, and Load)
17% Integrating 3rd Party Services

16% Internal tooling

8% Chat bots e.g., Alexa Skills (SDK for Alexa AT Assistant)

6% Internet of Things

Table 4: Popularity of serverless computing use cases according to a 2018 survey [22].

the cloud providers—such as older servers that may be less attractive to serverful cloud customers.
Both benefits increase income from existing resources.

Customers benefit from increased programming productivity, and in many scenarios can enjoy
cost savings as well, a consequence of the higher utilization of underlying servers. Even if serverless
computing lets customers be more efficient, the Jevons paradox [24] suggests that they will increase
their use of the cloud rather than cut back as the greater efficiency will increase the demand by
adding users.

Serverless also raises the cloud deployment level from x86 machine code—99% of cloud comput-
ers use the x86 instruction set—to high-level programming languagesﬂ which enables architectural
innovations. If ARM or RISC-V offer better cost-performance than x86, serverless computing makes
it easier to change instruction sets. Cloud providers could even embrace research in language ori-
ented optimizations and domain specific architectures specifically aimed at accelerating programs
written in languages like Python [25] (see Section [4)).

Cloud users like serverless computing because novices can deploy functions without any under-
standing of the cloud infrastructure and because experts save development time and stay focused
on problems unique to their application. Serverless users may save money since the functions are
executed only when events occur, and fine-grained accounting (today typically 100 milliseconds)
means they pay only for what they use versus for what they reserve. Table |4 shows the most
popular uses of serverless computing today.

Researchers have been attracted to serverless computing, and especially to cloud functions,
because it is a new general purpose compute abstraction that promises to become the future of
cloud computing, and because there are many opportunities for boosting the current performance
and overcoming its current limitations.

3 Limitations of Today’s Serverless Computing Platforms

Serverless cloud functions have been successfully employed for several classes of WorkloadsF;o-] includ-
ing API serving, event stream processing, and limited ET[E-] (see Table . To see what obstacles
prevent supporting more general workloads, we attempted to create serverless versions of applica-
tions that were of interest to us and studied examples published by others. These are not intended

9 Although several serverless computing providers run binary programs in addition to high-level language programs,
we believe the greatest upside potential for serverless is using high-level languages.

103ee “Use Cases” here: https://aws.amazon.com/lambda/

HThe ETL implemented with today’s cloud functions is typically restricted to Map-only processing.

https://aws.amazon.com/lambda/

to be representative of the rest of information technology outside of the current serverless com-
puting ecosystem; they are simply examples selected to uncover common weaknesses that might
prevent serverless versions of many other interesting applications.

In this section, we present an overview of five research projects and discuss the obstacles that
prevent existing serverless computing platforms from achieving state-of-the-art performance, i.e.,
matching the performance of serverful clouds for the same workloads. We are focused in particular
on approaches that utilize general purpose cloud functions for compute, rather than relying heavily
on other application-specific serverless offerings (BaaS). However in our final example, Serverless
SQLite, we identify a use case that maps so poorly to FaaS that we conclude that databases and
other state-heavy applications will remain as BaaS. An appendix at the end of this paper goes into
more detail of each application.

Interestingly, even this eclectic mix of applications exposed similar weaknesses, which we list
after describing the applications. Table [5| summarizes the five applications.

ExCamera: Video encoding in real-time. ExCamera [26] aims to provide a real-time
encoding service to users uploading their videos to sites, such as YouTube. Depending on the size
of the video, today’s encoding solutions can take tens of minutes, even hours. To perform encoding
in real time, ExCamera parallelizes the “slow” parts of the encoding, and performs the “fast” parts
serially. ExCamera exposes the internal state of the video encoder and decoder, allowing encoding
and decoding tasks to be executed using purely functional semantics. In particular, each task takes
the internal state along with video frames as input, and emits the modified internal state as output.

MapReduce. Analytics frameworks such as MapReduce, Hadoop, and Spark, have been tra-
ditionally deployed on managed clusters. While some of these analytics workloads are now moving
to serverless computing, these workloads mostly consist of Map-only jobs. The natural next step is
supporting full fledged MapReduce jobs. One of the driving forces behind this effort is leveraging
the flexibility of serverless computing to efficiently support jobs whose resource requirements vary
significantly during their execution.

Numpywren: Linear algebra. Large scale linear algebra computations are traditionally
deployed on supercomputers or high-performance computing clusters connected by high-speed,
low-latency networks. Given this history, serverless computing initially seems a poor fit. Yet there
are two reasons why serverless computing might still make sense for linear algebra computations.
First, managing clusters is a big barrier for many non-CS scientists [27]. Second, the amount of
parallelism can vary dramatically during a computation. Provisioning a cluster with a fixed size
will either slow down the job or leave the cluster underutilized.

Cirrus: Machine learning training. Machine Learning (ML) researchers have traditionally
used clusters of VMs for different tasks in ML workflows such as preprocessing, model training, and
hyperparameter tuning. One challenge with this approach is that different stages of this pipeline
can require significantly different amounts of resources. As with linear algebra algorithms, a fixed
cluster size will either lead to severe underutilization or severe slowdown. Serverless computing can
address this challenge by enabling every stage to scale to meet its resource demands. Further, it
frees developers from managing clusters.

Serverless SQLite: Databases. Various autoscaling database services already exist [28-33],
but to better understand the limitations of serverless computing it is important to understand
what makes database workloads particularly challenging to implement. In this context, we con-
sider whether a third party could implement a serverless database directly using cloud functions, the
general purpose serverless computing building block. A strawman solution would be to run common
transactional databases, such as PostgreSQL, Oracle, or MySQL inside cloud functions. However,
that immediately runs into a number of challenges. First, serverless computing has no built-in
persistent storage, so we need to leverage some remote persistent store, which introduces large la-

10

Application | Description Challenges Workarounds Cost-performance
Real-time On-the-fly Object store too Function-to- 60x faster, 6x
video video slow to support function cheaper versus
compression | encoding fine-grained communication VM instances.
(ExCamera) communication; to avoid object
functions too store; a function
coarse grained for | executes more
tasks. than one task.
MapReduce | Big data Shuffle doesn’t Small storage Sorted 100 TB
processing scale due to object | with low-latency, | 1% faster than
(Sort stores latency and | high IOPS to VM instances,
100TB) IOPS limits speed-up shuffle. costs 15% more.
Linear Large scale Need large Storage with Up to 3x slower
algebra linear problem size to low-latency completion time.
(Numpy- algebra overcome storage high-throughput 1.26x to 2.5x
wren) (S3) latency, hard | to handle smaller | lower in CPU
to implement problem sizes. resource
efficient broadcast. consumption.
ML ML training | Lack of fast Storage with 3x-bx faster than
pipelines at scale storage to low-latency, high | VM instances, up
(Cirrus) implement IOPS to to 7x higher total
parameter server; implement cost.
hard to implement | parameter server.
efficient broadcast,
aggregation.
Databases Primary Lack of shared Shared file 3x higher cost per
(Serverless state for memory, object system can work | transaction than
SQLite) applications | store has high if write needs are | published TPC-C
(OLTP) latency, lack of low. benchmarks.

support for
inbound
connectivity.

Reads scale to
match but writes
do not.

Table 5: Summary of requirements for new application areas for serverless computing.

tency. Second, these databases assume connection-oriented protocols, e.g., databases are running as

servers accepting connections from clients. This assumption conflicts with existing cloud functions
that are running behind network address translators, and thus don’t support incoming connec-
tions. Finally, while many high performance databases rely on shared memory [34], cloud functions
run in isolation so cannot share memory. While shared-nothing distributed databases [35H37] do

not require shared memory, they expect nodes to remain online and be directly addressable. All

these issues pose significant challenges to running traditional database software atop of serverless
computing, or to implementing equivalent functionality, so we expect databases to remain BaaS.

11

One of the key reasons these applications hope to use serverless computing is fine-grained
autoscaling, so that resource utilization closely matches each application’s the varying demand.
Table [5] summarizes the characteristics, challenges, and workarounds for these five applications,
which we next use to identify four limits in the current state of serverless computing.

3.1 Inadequate storage for fine-grained operations

The stateless nature of serverless platforms makes it difficult to support applications that have
fine-grained state sharing needs. This is mostly due to the limitations of existing storage services
offered by cloud providers. Table[6|summarizes the properties of the existing cloud storage services.

Object storage services such as AWS S3, Azure Blob Storage, and Google Cloud Storage are
highly scalable and provide inexpensive long-term object storage, but exhibit high access costs and
high access latencies. According to recent tests, all these services take at least 10 milliseconds
to read or write small objects [38]. With respect to IOPS, after the recent limit increase [39], S3
provides high throughput, but it comes with a high cost. Sustaining 100K IOPS costs $30/min [40],
3 to 4 orders of magnitude more than running an AWS ElastiCache instance [41]. Such an Elasti-
Cache instance provides better performance along several axes, with sub-millisecond read and write
latencies, and over 100K IOPS for one instance configured to run the single-threaded Redis server.

Key-value databases, such as AWS DynamoDB, Google Cloud Datastore, or Azure Cosmos
DB provide high IOPS, but are expensive and can take a long time to scale upF_Z] Finally, while
cloud providers offer in-memory storage instances based on popular open source projects such as
Memcached or Redis, they are not fault tolerant and do not autoscale as do serverless computing
platforms.

As can be seen in Table [bl applications built on serverless infrastructure require storage services
with transparent provisioning, the storage equivalent of compute autoscaling. Different applications
will likely motivate different guarantees of persistence and availability, and perhaps also latency or
other performance measures. We believe this calls for the development of ephemeral and durable
serverless storage options, which we discuss further in Section [4]

3.2 Lack of fine-grained coordination

To expand support to stateful applications, serverless frameworks need to provide a way for tasks
to coordinate. For instance, if task A uses task B’s output there must be a way for A to know
when its input is available, even if A and B reside on different nodes. Many protocols aiming to
ensure data consistency also require similar coordination.

None of the existing cloud storage services come with notification capabilities. While cloud
providers do offer stand-alone notification services, such as SNS [42] and SQS [43], these services
add significant latency, sometimes hundreds of milliseconds. Also, they can be costly when used
for fine grained coordination. There have been some proposed research systems such as Pocket [44]
that do not have many of these drawbacks, but they have not yet been adopted by cloud providers.

As such, applications are left with no choice but to either (1) manage a VM-based system that
provides notifications, as in ElastiCache and SAND [45], or (2) implement their own notification
mechanism, such as in ExCamera [26], that enables cloud functions to communicate with each other
via a long-running VM-based rendezvous server. This limitation also suggests that new variants of
serverless computing may be worth exploring, for example naming function instances and allowing
direct addressability for access to their internal state (e.g., Actors as a Service [46]).

120fficial best practices for scaling Google Cloud Datastore include the “500/50/5” rule: start with 500 operations
per second, then increase by 50% every 5 minutes. https://cloud.google.com/datastore/docs/best-practices.

12

https://cloud.google.com/datastore/docs/best-practices

Object DEtasi;mc Memory
Block Storage File Svstem a(uea ase Store (e.g., “Ideal”
Storage (e.g., AWS (e yAWS Gof.ie AWS Elas- storage
(e.g., AWS S3, Azure gE’FS Clog 1 tiCache, service for
EBS, IBM | Blob Store, ! " Google serverless
Google Datastore, .
Block Google . Cloud computing
Filestore) Azure i
Storage) Cloud Closmos Memorys
Storage) DB) tore)
Cloud functions access
Transparent
Provisioning

Availability and
persistence guarantees

Latency (mean)

Storage capacity
(1 GB/month)
Throughput (1
MB/s for 1 month)
10PS

(1/s for 1 month)

Cost]

Table 6: Characteristics of storage services by cloud providers to the serverless ideal. Costs are
monthly values for storing 1 GB (capacity), transferring 1 MB/s (throughput), and issuing 1 IOPS
(or 2.4 million requests in 30 days). All values reflect a 50/50 read/write balance and a minimum
transfer size of 4 KB. The color codings of entries are green for good, orange for medium, and red
for poor. Persistence and availability guarantees describe how well the system tolerates failures:
local provides reliable storage at one site, distributed ensures the ability to survive site failures,
and ephemeral describes data that resides in memory and is subject to loss, e.g., in the event of
software crashes. The serverless ideal would provide cost and performance comparable to block
storage, while adding transparent provisioning and access for cloud functions.

3.3 Poor performance for standard communication patterns

Broadcast, aggregation, and shuffle are some of the most common communication primitives in
distributed systems. These operations are commonly employed by applications such as machine
learning training and big data analytics. Figure |2| shows the communication patterns for these
primitives for both VM-based and function-based solutions.

13A shared file system is integrated on Azure Functions, but not on other cloud functions platforms.

1File system capacity scales automatically on Azure, AWS, IBM, but not on Goo