Azure Serverless Computing
Cookbook

Build applications hosted on serverless architecture using
Azure Functions

Praveen Kumar Sreeram

BIRMINGHAM - MUMBAI

Azure Serverless Computing Cookbook

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2017

Production reference: 1160817

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78839-082-8

www.packtpub.com

http://www.packtpub.com

Author
Praveen Kumar Sreeram

Reviewer
Florian Klaffenbach

Commissioning Editor
Vijin Boricha

Acquisition Editor
Shrilekha Inani

Content Development Editor
Sweeny Dias

Technical Editor
Komal Karne

Credits

Copy Editor
Stuti Srivastava

Project Coordinator
Virginia Dias

Proofreader
Safis Editing

Indexer
Aishwarya Gangawane

Graphics
Kirk D'Penha

Production Coordinator
Aparna Bhagat

Foreword

It is my pleasure to write the foreword for Azure Serverless Computing Cookbook by Praveen
Kumar Sreeram. Azure Functions is one of the key Platform as a service (PaaS) components
from Microsoft and provides a rich experience for the event-driven, compute-on-demand
programming model. To use Azure Functions, the user is not required to be a master of any
specific programming language; rather, they can use their language of choice, such as C#,
Node,js, JavaScript, PowerShell, and so on, to create highly scalable functions.

Azure Serverless Computing Cookbook shows the author's dedication and hard work to come
out with a gem that will not only benefit developers and architects, but also enterprises that
want to leverage serverless solutions in Azure. The author has thoroughly gone through
each parameter and every consideration in tackling the concept of Azure Functions. You
will surely like the way numerous code samples and use cases blend together to create a
knowledge repository for you to start with cloud development on the go.

I would like to thank Packt, Mohd. Riyan Khan, and Shrilekha Inani for involving me in
evaluating the content and giving me the opportunity to write this foreword.

Abhishek Kumar

Microsoft Azure MVP and Consultant — Datacom New Zealand

About the Author

Praveen Kumar Sreeram works as a Solution Architect at PennyWise Solutions (an Ogilvy
and Mather Company). He has over 12 years of experience in the field of development,
analysis, design, and delivery of applications of various technologies, including custom web
development using ASP.NET and MVC to building mobile apps using the cross-platform
technology Xamarin for domains such as insurance, telecom, and wireless expense
management. He has been awarded two times as the Most Valuable Professional by one of
the most leading social community websites, CSharpCorner, for his contributions toward
writing articles and helping community members, mostly on Microsoft Azure. He is highly
focused on learning about technology. He is an avid blogger who writes about his learning
at his personal blog, called PraveenKumarSreeram and you can also follow him on twitter
at @PrawinSreeram. His current focus is on analyzing business problems and providing
technical solutions for various projects related to Microsoft Azure and Sitecore.

First of all, my thanks go to the great editorial team at Packt Publishing for identifying my
potential and giving me the opportunity to write this book, especially Shrilekha Inani,
Sweeny Dias, Komal Karne, Yogesh Mishra, and the whole team who encouraged me a lot.
Without them, I couldn’t have done it.

I would like to thank my current employer, PennyWise Solutions, all of my management
team, especially the CTOs, Mr. Pavan Pochu and Mr. Arup Dutta, for guiding me all the
way, and my lovely colleagues who encouraged me a lot.

I would like to thank my grandma Neelavatamma; dad, Kamalakar; mom, Seetha; my better
half, Haritha; and my little princess, Rithwika; for being in my life and giving me courage
all the time.

I would like to express my deepest gratitude to Medeme Narasimhulu and Medeme
Saraswathi (my uncle and aunt) who have been supporting me and encouraging me right
from my college days. Without them, I wouldn’t have even become a software professional.

About the Reviewer

Florian Klaffenbach started his IT career in 2004 as a 1st and 2nd level IT support
technician and IT salesman trainee for a B2B online shop. After that, he changed to a small
company working as IT project manager for planning, implementing, and integrating from
industrial plants and laundries into enterprise IT. After a few years, he changed course to
Dell Germany. There, he started from scratch as an enterprise technical support analyst and
later worked on a project to start Dell technical communities and support over social media
in Europe and outside of the US. Currently, he works as a Technology Solutions
Professional for Microsoft, specializing in hybrid Microsoft cloud infrastructured.

Additionally, he is active as a Microsoft blogger and lecturer. He blogs on his own page,
Datacenter-Flo.de, and the Brocade Germany community. Together with a very good friend,
he founded Windows Server User Group Berlin to create a network of Microsoft IT Pros in
Berlin. Florian maintains a very tight network with many vendors such as Cisco, Dell, and
Microsoft and several communities. This helps him grow his experience and get the best out
of a solution for his customers. Since 2016, he has also been the Co-Chairman of the Azure
community Germany. In April 2016, Microsoft awarded Florian the Microsoft Most
Valuable Professional for Cloud and Datacenter Management. In 2017, after joining
Microsoft, Florian became an MVP reconnect member.

Florian has worked for several companies and Microsoft partners such as Dell Germany,
CGI Germany, and msg services ag. Now he has joined Microsoft Germany in a technical
presales role and supports customers in getting started with hybrid cloud infrastructures
and topics.

He has also worked on the following books:

e Taking Control with System Center App Controller

e Microsoft Azure Storage Essentials

e Mastering Cloud Development using Microsoft Azure
e Mastering Microsoft Deployment Toolkit 2013
Implementing Azure Design Patterns

Windows Server 2016 Cookbook

Mastering Active Directory

Exchange PowerShell Cookbook

Implementing Azure Solutions

Acknowledgments

I want to thank Packt Publishing for giving me the chance to review the book as well as my
employer and my family for being accommodating of the time investment I have made in
this project. There is a special thanks I need to make to Virginia Dias from Packt. It is always
awesome to be a reviewer on her projects, and it’s a great pleasure to work with her.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

~AnVMapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1788390822.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788390822

Table of Contents

Preface 1
Chapter 1: Accelerate Your Cloud Application Development Using Azure

Function Triggers and Bindings 7
Introduction 7
Building a backend Web API using HTTP triggers 8

Getting ready 9
How to do it... 9
How it works... 13
See also 13
Persisting employee details using Azure Storage table output bindings 13
Getting ready 13
How to do it... 14
How it works... 18
Understanding more about Storage Connection 19

What is Azure Table storage service? 20

Partition key and row key 20
There's more... 20
Saving the profile images to Queues using Queue output bindings 20
Getting ready 21
How to do it... 21
How it works... 24
There's more... 25
See also 25
Storing the image in Azure Blob storage 25
Getting ready 25
How to do it... 26
How it works... 28
There's more... 28
See also... 28
Cropping an image using ImageResizer trigger 29
Getting ready 29
How to do it... 30
How it works... 33

See also 34

Table of Contents

Chapter 2: Working with Notifications Using SendGrid and Twilio

Services 35
Introduction 35
Sending an email notification to the administrator of the website using
the SendGrid service 36

Getting ready 36
Creating a SendGrid account 36
Generating the SendGrid API key 39
Configuring the SendGrid API key with the Azure Function app 40

How to do it... 41

How it works... 43

See also 44

Sending an email notification to the end user dynamically 44

Getting ready 44

How to do it... 44

How it works... 46

There's more... 47

See also 48

Implementing email logging in the Blob storage 48
How to do it... 49
How it works... 50
Modifying the email content to include an attachment 51

Getting ready 51

How to do it... 51
Customizing the log file name using IBinder interface 51
Adding an attachment to the email 53

There's more... 53

Sending SMS notification to the end user using the Twilio service 54

Getting ready 54

How to do it... 56

How it works... 58

Chapter 3: Seamless Integration of Azure Functions with Other Azure

Services 59
Introduction 59
Using Cognitive Services to locate faces from the images 60

Getting ready 60
Creating a new Computer Vision API account 60
Configuring App settings 62

How to do it... 62

[ii]

Table of Contents

How it works... 67
There's more... 68
Azure SQL Database interactions using Azure Functions 69
Getting ready 69
How to do it... 71
How it works... 74
Processing a file stored in OneDrive using an external file trigger 74
Getting ready 75
How to do it... 75
Monitoring tweets using Logic Apps and notifying when popular users
tweet 81
Getting ready 81
How to do it... 82
Create a new Logic App 82
Designing the Logic App with Twitter and Gmail connectors 84
Testing the Logic App functionality 89
How it works... 90
See also 90
Integrating Logic Apps with Azure Functions 90
Getting ready 90
How to do it... 91
There's more... 96
See also 96
Chapter 4: Understanding the Integrated Developer Experience of
Visual Studio Tools for Azure Functions 97
Introduction 98
Creating the function app using Visual Studio 2017 99
Getting ready 99
How to do it... 100
How it works... 103
There's more... 103
Debugging C# Azure Functions on a local staged environment using
Visual Studio 2017 103
Getting ready 104
How to do it... 104
How it works... 108
There's more... 109
Connecting to the Azure Cloud storage from local Visual Studio
environment 109

[iii]

Table of Contents

Getting ready 109
How to do it... 110
How it works... 114
There's more... 114
See also 115
Deploying the Azure Function app to Azure Cloud using Visual Studio 115
How to do it... 115
There's more... 119
See also 120
Debugging live C# Azure Function hosted on the Microsoft Azure
Cloud environment using Visual Studio 120
Getting ready 120
How to do it... 121
See also 124
Chapter 5: Exploring Testing Tools for the Validation of Azure
Functions 125
Introduction 125
Testing Azure Functions 126
Getting ready 126
How to do it... 127
Testing HTTP triggers using Postman 127
Testing Blob trigger using the Microsoft Storage Explorer 128
Testing Queue trigger using the Azure Management portal 131
There's more... 134
Testing an Azure Function on a staged environment using deployment
slots 134
How to do it... 135
There's more 143
Load testing Azure Functions using VSTS 144
Getting ready 144
How to do it... 144
There's more... 149
See also 149
Creating and testing Azure Function locally using Azure CLI tools 150
Getting ready 150
How to do it... 151
Testing and validating Azure Function responsiveness using
Application Insights 155
Getting ready 156

[iv]

Table of Contents

How to do it... 157
How it works... 161
There's more... 161
Chapter 6: Monitoring and Troubleshooting Azure Serverless Services 163
Introduction 163
Monitoring your Azure Functions 164
Getting ready 164
How to do it... 165
There's more... 170
Monitoring Azure Functions using Application Insights 170
Getting ready 170
How to do it... 171
How it works... 174
There's more ... 174
Pushing custom telemetry details to analytics of Application Insights 174
Getting ready 176
How to do it... 176
Creating Al function 176
Configuring access keys 178
Integrating and testing Al query 181
Configuring the custom derived metric report 184
How it works... 186
See also 186
Sending application telemetry details via email 186
Getting ready 187
How to do it... 187
How it works... 190
There's more... 190
See also 190
Integrating real-time Al monitoring data with Power Bl using Azure
Functions 191
Getting ready 192
How to do it... 192
Configuring Power Bl with dashboard, dataset, and push URI 192
Creating Azure Al real-time Power Bl - C# function 198
How it works... 202
There's more... 202
Chapter 7: Code Reusability and Refactoring the Code in Azure
Functions 203

[v]

Table of Contents

Introduction 203
Creating a common code repository for better manageability within a
function app 204
How to do it... 204
How it works... 208
There's more... 208
See also 209
Shared code across Azure Functions using class libraries 210
How to do it... 210
How it works... 213
There's more... 213
See also 214
Azure Functions and precompiled assemblies 214
Getting ready... 214
How to do it... 214
Creating a class library using Visual Studio 214
Creating a new HTTP trigger Azure Function 216
How it works... 218
There's more... 218
See also 219
Migrating legacy C# application classes to Azure Functions using
PowerShell 220
Getting ready 221
How to do it... 221
Creating an application using Visual Studio 221
Creating a new PowerShell Azure Function 222
How it works... 225
See also 225
Using strongly typed classes in Azure Functions 225
Getting ready 226
How to do it... 226
How it works... 229
There's more... 229
See also 229
Chapter 8: Developing Reliable and Durable Serverless Applications
Using Durable Functions 231
Introduction 231
Configuring Durable Functions in the Azure Management portal 232
Getting ready 232

[vil

Table of Contents

How to do it... 232
There's more... 235
See also 236
Creating a hello world Durable Function app 236
Getting ready 236
How to do it... 236
Creating HttpStart Function - the Orchestrator client 237
Creating Orchestrator function 240
Creating Activity function 241
How it works... 243
There's more... 243
See also 243
Testing and troubleshooting Durable Functions 244
Getting ready 244
How to do it... 244
See also 246
Implementing multithreaded reliable applications using Durable
Functions 246
Getting ready 247
How to do it... 247
Creating Orchestrator function 247
Creating Activity function GetAllCustomers 248
Creating Activity function CreateBARCodelmagesPerCustomer 249
How it works... 252
There's more... 252
See also 252
Chapter 9: Implement Best Practices for Azure Functions 255
Adding multiple messages to a Queue using the IAsyncCollector
function 255
Getting ready 256
How to do it... 257
How it works... 259
There's more... 259
Implementing defensive applications using Azure Functions and
Queue triggers 260
Getting ready 260
How to do it... 260
CreateQueueMessage - C# Console Application 261
Developing the Azure Function - Queue trigger 262
Running tests using the Console Application 263

[vii]

Table of Contents

How it works... 264
There's more... 265
Handling massive ingress using Event Hub for loT and similar
scenarios 265
Getting ready 265
How to do it... 266
Creating an Azure Function Event Hub trigger 266
Developing a Console Application that simulates loT data 269
Enabling authorization for function apps 272
Getting ready 272
How to do it... 273
How it works... 274
There's more... 275
See also 275
Controlling access to Azure Functions using function keys 275
How to do it... 276
Configuring the function key for each application 276
Configuring one host key for all the functions in a single function app 277
There's more... 279
See also 280
Chapter 10: Implement Continuous Integration and Deployment of
Azure Functions Using Visual Studio Team Services 281
Introduction 281
Prerequisites 283
Continuous integration - creating a build definition 283
How to do it... 283
How it works... 286
There's more... 287
See also 288
Continuous integration - queuing the build and trigger manually 288
Getting ready 288
How to do it... 288
See also 291
Configuring and triggering the automated build 292
How to do it... 292
How it works... 295
There's more... 295
See also 297
Creating a release definition 297

[viii]

Table of Contents

Index

Getting ready
How to do it...
How it works...
There's more...
See also
Trigger the release automatically

Getting ready
How to do it...
How it works...
There's more...
See also

297
298
304
305
305
305
305
306
308
308
308

309

[ix]

Preface

Microsoft provides a solution to easily run small segments of code in the cloud with Azure
Functions. Azure Functions provides solutions for processing data, integrating systems, and
building simple APIs and microservices.

The book starts with intermediate-level recipes on serverless computing along with some
use cases on the benefits and key features of Azure Functions. Then, we'll deep dive into the
core aspects of Azure Functions, such as the services it provides, how you can develop and
write Azure Functions, and how to monitor and troubleshoot them.

Moving on, you'll get practical recipes on integrating DevOps with Azure Functions, and
providing continuous deployment with Visual Studio Team Services. The book also
provides hands-on steps and tutorials based on real-world serverless use cases to guide you
through configuring and setting up your serverless environments with ease. Finally, you'll
see how to manage Azure Functions, providing enterprise-level security and compliance to
your serverless code architecture.

By the end of this book, you will have all the skills required to work with serverless code
architectures, providing continuous delivery to your users.

What this book covers

Chapter 1, Accelerate Your Cloud Application Development Using Azure Function Triggers and
Bindings, goes through how the Azure Functions Runtime provides templates that can be
used to quickly integrate different Azure services for your application needs. It reduces all
of the plumbing code so that you can focus on just your application logic. In this chapter,
you will learn how to build web APIs and bindings related to Azure Storage Services.

Chapter 2, Working with Notifications Using SendGrid and Twilio Services, deals with how
communication is one of the most critical part of any business requirement. In this chapter,
you will learn how easy it is to connect your business requirements written in Azure
Functions with the most popular communication services such as SendGrid (for email) and
Twilio (for SMS).

Chapter 3, Seemless Integration of Azure Functions with Other Azure Services, discusses how
Azure provides many connectors that you could leverage to integrate your business
applications with other systems pretty easily. In this chapter, you will learn how to
integrate Azure Functions with cognitive services, Logic Apps, and OneDrive.

Preface

Chapter 4, Understanding the Integrated Developer Experience of Visual Studio Tools for Azure
Functions, builds on the previous chapters and teaches you how to develop Azure Functions
using Visual Studio, which provides you many features such as Intellisense, local and
remote debugging, and most of the regular development features.

Chapter 5, Exploring Testing Tools for the Validation of Azure Functions, helps you understand
different tools and processes that help you streamline your development and quality
control processes. You will also learn how to create loads using VSTS load testing and
monitor the performance of VMs using the reports provided by Application Insights.
Finally, you will also learn how to configure alerts that notify you when your apps are not
responsive.

Chapter 6, Monitoring and Troubleshooting Azure Serverless Services, teaches you how to
continuously monitor applications, analyze the performance, and review the logs to
understand whether there are any issues that end users are facing. Azure provides us with
multiple tools to achieve all the monitoring requirements, right from the development stage
and the maintenance stage of the application.

Chapter 7, Code Reusability and Refactoring the Code in Azure Functions, helps you in
understanding how to refactor your code and make use of classes for reusability in
serverless architectures. You will also learn how to migrate legacy C# classes to Azure
serverless functions.

Chapter 8, Developing Reliable and Durable Serverless Applications Using Durable Functions,
shows you how to develop long-running, stateful solutions in serverless environments
using Durable Functions, which has advanced features that have been released as an
extension to Azure Functions.

Chapter 9, Implement Best Practices for Azure Functions, teaches a few of the best practices
that one should follow to improve performance and security while working in Azure
Functions.

Chapter 10, Implement Continuous Integration and Deployment of Azure Functions Using Visual
Studio Team Services, helps you learn how to implement continuous integration and delivery
of your Azure Functions code with the help of Visual Studio and VSTS.

What you need for this book

Prior knowledge and hands-on experience with core services of Microsoft Azure is
required.

[2]

Preface

Who this book is for

If you are a cloud administrator, architect, or developer who wants to build scalable
systems and deploy serverless applications with Azure Functions, then this book is for you.

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to
doit..., How it works..., There's more..., and See also). To give clear instructions on how to
complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

[3]

Preface

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "For this
example, [have used RegisterUser as the name of the Azure Function."

A block of code is set as follows:

public UserProfile(string lastName, string firstName)

{
this.PartitionKey = "pl1";
this.RowKey = Guid.NewGuid() .ToString();;

}

Any command-line input or output is written as follows:

Install-Package Microsoft.Azure.WebJobs.Extensions -Version 2.0.0

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In the SendGrid Email
Delivery blade, click on the Create button to navigate to Create a New SendGrid Account.

"

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

[4]

http://www.packtpub.com/authors

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at

www . packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support, and register to have the files e-mailed directly to you. You can
download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk =

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Azure-Serverless-Computing—Cookbook. We also
have other code bundles from our rich catalog of books and videos available at
nttps://github.com/PacktPublishing/. Check them out!

[5]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Azure-Serverless-Computing-Cookbook
https://github.com/PacktPublishing/

Preface

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file

from https://www.packtpub.com/sites/default/files/downloads/AzureServerlessComp
utingCookbook_ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support, and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[6]

https://www.packtpub.com/sites/default/files/downloads/AzureServerlessComputingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AzureServerlessComputingCookbook_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Accelerate Your Cloud
Application Development Using
Azure Function Triggers and
Bindings

In this chapter, we will cover the following recipes:

Building a backend Web API using HTTP triggers

Persisting employee details using Azure Storage table output bindings
Saving the profile images to Queues using Queue output bindings
Storing the image in Azure Blob storage

¢ Cropping an image using ImageResizer trigger

Introduction

Every software application needs backend components that are responsible for taking care
of the business logic and storing the data into some kind of storage such as database,
filesystem, and so on. Each of these backend components could be developed using
different technologies. Azure serverless technology also allows us to develop these backend
APIs using Azure Functions.

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings

Azure Functions provide many out-of-the-box templates that solves most of the common
problems such as connecting to storage, building Web APIs, cropping the images, and so
on. In this chapter, we will learn how to use these built-in templates. Along with learning
the concepts related to Azure serverless computing, we will also try to implement a solution
to a basic domain problem of creating components required for any organization to manage
the internal employee information.

Following is a simple diagram that helps you understand what we will be going to achieve
in this chapter:

o| Azure Storage

[- Table

o| Http Function -
User | Redqister User
l .| Azure Storage - Azure function -
- CQueue “| CreateProfilePictures
Azure Storage | Azure Function - | Azure Storage
Blob " Image Resizer | Blob

Building a backend Web API using HTTP
triggers

We will use Azure serverless architecture for building a Web API using HTTP triggers.
These HTTP triggers could be consumed by any frontend application that is capable of
making HTTP calls.

[8]

Chapter 1

Getting ready

Let's start our journey of understanding Azure serverless computing using Azure Functions
by creating a basic backend Web API that responds to HTTP requests:

o Please refer to the URL nttps://azure.microsoft.com/en-in/free/?wt .mc_id=
AID607363_SEM_8y6027as for creating a free Azure Account.

o Also, visit https://docs.microsoft.com/en-us/azure/azure-functions/
functions-create-function-app-portal to understand the step by step process
of creating a function app and https://docs.microsoft.com/en—us/azure/
azure—functions/functions-create-first—azure-function to create a
function. While creating a function, a Storage Account is also created for storing
all the files. Please remember the name of the Storage Account which will be used
later in the other chapters.

We will be using C# as the programming language throughout the book.

How to do it...

1. Navigate to the Function App listing page. Choose the function app in which you
would like to add a new function.

2. Create a new function by clicking on the + icon as shown in the following
screenshot:

w ¢ % AzureFunctionCockBoock = P

w =— Functions -+

— . _—
w =— Proxies (preview) +

[9]

https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings

3. If you have created a brand new function, then clicking on the + icon in the
preceding step, you would see the Get started quickly with a premade function
page. Please click on the create your own custom functions link to navigate to
the page where you can see all the built-in templates for creating your Azure
Functions.

4. In the Choose a template below or go to the quickstart section, choose
HTTPTrigger-CSharp as shown in the following screenshot to create a new
HTTP trigger function:

Choose a template below or

E HTTP trigger

A function that will be run whenever it receives an HTTP
request, responding based on data in the body or query
string

Batch | C# | F# JavaScript PowerShell
Python TypeScript

5. Provide a meaningful name. For this example, I have used RegisterUser as the
name of the Azure Function.
6. In the Authorization level drop-down, choose the Anonymous option as shown

in the following screenshot. We will learn more about the all the authorization
levels in chapter 9, Implement Best Practices for Azure Functions:

Authorization level €

Anomyrmous

[10]

Chapter 1

7. Once you provide the name and choose the Authorization level, click on Create
button to create the HTTP trigger function.

8. As soon as you create the function, all the required code and configuration files
will be created automatically and the run. csx file will be opened for you to edit
the code. Remove the default code and replace it with the following code:

using System.Net;
public static async Task<HttpResponseMessage>
Run (HttpRequestMessage req, TraceWriter log)
{
string firstname=null, lastname = null;
dynamic data = await reqg.Content.ReadAsAsync<object>();
firstname = firstname ?? data?.firstname;
lastname = data?.lastname;
return (lastname + firstname) == null ?
req.CreateResponse (HttpStatusCode.BadRequest,
"Please pass a name on the query string or in the
request body")
reqg.CreateResponse (HttpStatusCode.OK, "Hello " +
firstname + " " + lastname);

}

9. Save the changes by clicking on the Save button available just above the code
editor.
10. Let's try to test the RegisterUser function using the Test console. Click on the
tab named Test as shown in the following screenshot to open the Test console:

n URL

shat (qj;sa_[S| MILN, A

[11]

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings

11. Enter the values for firstname and lastname, in the Request body section as
shown in the following screenshot:

Wiew files Test

HTTP method

POET v

Query
+ Add pararmeter

Headers
There are no headers
o Add header

Request body
11
2 “"firstname™: "Bill",
E] "lastname™: "Gates™
4}

Please make sure you select POST in the HTTP method drop-down.

12. Once you have reviewed the input parameters, click on the Run button available
at the bottom of the Test console as shown in the following screenshot:

Output ¢

"Hello Bill Gates”

3

P Fun

13. If the input request workload is passed correctly with all the required parameters,
you will see a Status 200 OK, and the output in the Output window will be as
shown in the preceding screenshot.

[12]

Chapter 1

How it works...

We have created the first basic Azure Function using HTTP triggers and made a few
modifications to the default code. The code just accepts firstname and lastname
parameters and prints the name of the end user with a Hello {firstname} {lastname}
message as a response. We have also learnt how to test the HTTP trigger function right from
the Azure Management portal.

For the sake of simplicity, I didn't perform validations of the input
parameter. Please make sure that you validate all the input parameters in
your applications running on your production environment.

See also

e The Enabling authorization for function apps recipe in Chapter 9, Implement Best
Practices for Azure Functions

Persisting employee details using Azure
Storage table output bindings

In the previous recipe, you have learnt how to create an HTTP trigger and accept the input
parameters. Let's now work on something interesting, that is, where you store the input
data into a persistent medium. Azure Functions supports us to store data in many ways. For
this example, we will store the data in Azure Table storage.

Getting ready

In this recipe, you will learn how easy it is to integrate an HTTP trigger and the Azure
Table storage service using output bindings. The Azure HTTP trigger function receives the
data from multiple sources and stores the user profile data in a storage table named
tblUserProfile.

e For this recipe, we will use the same HTTP trigger that we have created in our
previous recipe.

[13]

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings

e We will be using Azure Storage Explorer which is a tool that helps us to work
with the data stored in Azure Storage account. You can download it from http:/
/storageexplorer.com/.

* You can learn more about Connect to the Storage Account using Azure Storage

Explorer at https://docs.microsoft.com/en-us/azure/vs—azure-tools—
storage-manage-with-storage-explorer

How to do it...

1. Navigate to the Integrate tab of the RegisterUser HTTP trigger function.

2. Click on the New Output button and select Azure Table Storage then click on
the Select button:

[# Advanced editor
Triggers @ Inputs & Outputs &

HTTF (req) = Mews Input HTTP ireturn)

=+ New Output

D D D D

HTTP Azure Service Bus Azure Table Horage

Azure DocurnertDB Document Azure bobile Table Record

0 0 0 0

Thaeilic Sha Rt Frarneuinrl b (Dpen i gandt h

[14]

http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer

Chapter 1

3. Once you click on the Select button in the previous step, you will be prompted to
choose the following settings of the Azure Table storage output bindings:
e Table parameter name: This is the name of the parameter that you will
be using in the Run method of the Azure Function. For this example,
please provide objUserProfileTable as the value.

e Table name: A new table in the Azure Table storage will be created to
persist the data. If the table doesn't exist already, Azure will
automatically create one for you! For this example, please provide
tblUserProfile as the table name.

¢ Storage account connection: If you don't see the Storage account
connection string, click on the new (shown in the following
screenshot) to create a new one or to choose an existing storage
account.

¢ The Azure Table storage output bindings should be as shown in the
following screenshot:

Azure Table Storage output (objUserProfileTable) delete

Table pararnster narne € Table rarne €

objUserProfileTable thilserProfile

Use function return value

Storageaccount connection €

azurefunctionscookbook_STORAGE ¥ new

4. Click on Save to save the changes.

[15]

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings

5. Navigate to the code editor by clicking on the function name and paste the
following code:

#r "Microsoft.WindowsAzure.Storage"
using System.Net;
using Microsoft.WindowsAzure.Storage.Table;

public static async Task<HttpResponseMessage>
Run (HttpRequestMessage req, TraceWriter
log,CloudTable objUserProfileTable)
{

dynamic data = await

req.Content .ReadAsAsync<object> () ;

string firstname= data.firstname;

string lastname=data.lastname;

UserProfile objUserProfile = new UserProfile(firstname,
lastname) ;
TableOperation objTblOperationInsert =
TableOperation.Insert (objUserProfile);
objUserProfileTable.Execute (objTblOperationInsert) ;
return req.CreateResponse (HttpStatusCode.OK,
"Thank you for Registering..");

public class UserProfile : TableEntity
{
public UserProfile(string firstName, string lastName)
{
this.PartitionKey = "pl";
this.RowKey = Guid.NewGuid() .ToString();;
this.FirstName = firstName;
this.LastName = lastName;
}
public UserProfile() { }
public string FirstName { get; set; }
public string LastName { get; set; }

[16]

Chapter 1

6. Let's execute the function by clicking on the Run button of the Test tab by
passing firstname and lastname parameters in the Request body as shown in
the following screenshot:

Wiew files >

HTTP miethod

POET v

Cluery
+ odd pararmneter

Headers
There gre no hegders
* Add header

I?equest bady
1A B

“firstname®™: “B111"™,
"lastname™: "Gates™

ELRRETRY N

@ Status: 200 OK

"Thank wyou for Registering.."

I| B Fun ‘II

[17]

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings

7. If everything went well, you should get a Status 200 OK message in the Output
box as shown in the preceding screenshot. Let's navigate to Azure Storage
Explorer and view the table storage to see if the table named tblUserProfile
was created successfully:

B tblUserProfile X

= 3
= B = o 74 B- Er X > £
Query Import Export Add Edit Select al Column Options Delete Table Statistics Refresh
PartitionKey | RowKey Timestamp FirstName LastMame
[Pt [411e5064-0120-4303-b74a-bde305<37cE8 2018-01-08T16:54:18.0347 EN

How it works...

Azure Functions allows us to easily integrate with other Azure services just by adding an
output binding to the trigger. For this example, we have integrated the HTTP trigger with
the Azure Storage table binding and also configured the Azure Storage account by
providing the storage connection string and the Azure Storage table name in which we
would like to create a record for each of the HTTP requests received by the HTTP trigger.

We have also added an additional parameter for handling the table storage named
objUserProfileTable, of type CloudTable, to the Run method. We can perform all the
operations on the Azure Table storage using objUserProfileTable.

For the sake of explanation the input parameters are not validated in the
code sample. However, in your production environment, it's important
that you should validate them before storing in in any kind of persist
medium.

We have also created an object of UserProfile, and filled it with the values received in the
request object, and then passed it to a table operation. You can learn more about handling
operations on Azure Table storage service from the URL https://docs.microsoft.com/en-
us/azure/storage/storage—-dotnet—-how-to-use-tables.

[18]

https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables

Chapter 1

Understanding more about Storage Connection

When you create a new storage connection (please refer to the third step of the How to do it...
section of this recipe) a new App settings will be created as shown in the following
screenshot:
App settings
DefaultEndpointsProtocal=h.,

DefaultEndpointsProtocal=h.,

DefaultEndpoint:
azurefunctio

6.5.0

DefaultEndpointsP ol=h., b setting

Value b settin q

You can navigate to the App settings by clicking on Application settings of the Platform
features tab as shown in the following screenshot:

Chverview Settings Platform features AP definition {preview)

L2 Search features

GEMERAL SETTINGS METWORKING AP1
Application settings CORS
Properties sy APl definition

[19]

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings

What is Azure Table storage service?

Azure Table storage service is a NoSQL key-value persistent medium for storing semi-

structured data. You can learn more about the same at https://azure.microsoft.com/en—
in/services/storage/tables/.

Partition key and row key

The primary key of Azure Table storage tables has two parts as follows:

e Partition key: Azure Table storage records are classified and organized into
partitions. Each record located in a partition will have the same partition key (p1
in our example).

¢ Row key: A unique value should be assigned for each of the rows.

A clustered index will be created with the values of the partition key and
8 row key to improve the query performance.

There's more...
Following is the very first line of the code in this recipe:

#r "Microsoft.WindowsAzure.Storage"

The preceding line of code instructs the function runtime to include a reference to the
specified library to the current context.

Saving the profile images to Queues using
Queue output bindings

In the previous recipe, you have learnt how to receive two string parameters firstname
and lastname in the Request body, and store them in the Azure Table storage. In this

recipe, you will learn how to receive a URL of an image and save the same in the Blob
container of an Azure Storage account.

[20]

https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/

Chapter 1

We could have processed the downloaded user profile image in the recipe Persisting
employee details using Azure Storage table output bindings. However, keeping in mind the size
of the profile pictures, the processing of images on the fly in the HTTP requests might
hinder the performance of the function. For that reason, we will just grab the URL of the
profile picture and store it in Queue, and later we can process the image and store it in the

Blob.

Getting ready

We will be updating the code of the RegisterUser function that we have used in the
previous recipes.

How to do it...

1.

Navigate to the Integrate tab of the RegisterUser HTTP trigger function.

2. Click on the New Output button and select Azure Queue Storage then click on

the Select button.

Provide the following parameters in the Azure Queue Storage output settings:
¢ Queue name: Set the value of the Queue name as
userprofileimagesqueue
e Storage account connection: Please make sure that you select the right
storage account in the Storage account connection field

e Message parameter name: Set the name of the parameter to
objUserProfileQueueltem which will be used in the Run method

Click on Save to the create the new output binding.

[21]

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings

5. In this recipe, we will look at another approach of grabbing the request
parameters for which we will use the Newtonsoft.JSON library to parse the
JSON data. Let's navigate to the View files tab as shown in the following
screenshot:

Test

=+ Addl T Upload 1l Delete

= Registerlsers

[functian jsan

[rur.csx

O projectjson

6. As shown in the preceding screenshot, click on Add to add a new file. Please
make sure that you name it as project . json as shown in the preceding
screenshot.

7. Once the file is created, add the following code to the project. json file. The
following code adds the reference of the Newtonsoft . Json library.

{

"frameworks" : {
"net4e6": |
"dependencies" :{
"Newtonsoft.Jdson" : "10.0.2"

}

}

8. Navigate back to the code editor by clicking on the function name
(RegisterUser in this example) and paste the following code:

#r "Microsoft.WindowsAzure.Storage"

using System.Net;

using Microsoft.WindowsAzure.Storage.Table;
using Newtonsoft.Json;

[22]

Chapter 1

public static void Run (HttpRequestMessage req,
TraceWriter log,
CloudTable
objUserProfileTable,
out string
objUserProfileQueueltem

)

var inputs = req.Content.ReadAsStringAsync () .Result;

dynamic inputJson = JsonConvert.DeserializeObject<dynamic>
(inputs) ;

string firstname= inputJson.firstname;

string lastname=inputJson.lastname;

string profilePicUrl = inputJson.ProfilePicUrl;

objUserProfileQueueltem = profilePicUrl;

UserProfile objUserProfile = new UserProfile(firstname,
lastname, profilePicUrl);

TableOperation objTblOperationInsert =
TableOperation.Insert (objUserProfile);
objUserProfileTable.Execute (0bjTblOperationInsert) ;

public class UserProfile : TableEntity
{
public UserProfile(string firstname, string lastname,
string profilePicUrl)
{
this.PartitionKey = "pl1";
this.RowKey = Guid.NewGuid () .ToString();
this.FirstName = firstname;
this.LastName = lastname;
this.ProfilePicUrl = profilePicUrl;
}
public UserProfile() { }
public string FirstName { get; set; }
public string LastName { get; set; }
public string ProfilePicUrl {get; set;}
}

9. Click on Save to save the code changes in the code editor of the run. csx file.

[23]

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings

10. Let's test the code by adding another parameter ProfilePicUrl to the Request
body shown as follows then click on the Run button in the Test tab of the Azure
Function code editor window: The image used in the below JSON might not exist
when you are reading this book. So, Please make sure that you provide a valid

URL of the image.
{
"firstname": "Bill",
"lastname": "Gates",

"ProfilePicUrl":"https://upload.wikimedia.org/wikipedia/
commons/1/19/Bill_Gates_June_2015. jpg"
}

11. If everything goes fine you will see the Status : 200 OK message, then the image
URL that you have passed as an input parameter in the Request body will be
created as a Queue message in the Azure Storage Queue service. Let's navigate to
Azure Storage Explorer, and view the Queue named
userprofileimagesqueue, which is the Queue name that we have provided in
the Step 3. Following is the screenshot of the Queue message that was created:

c + - | ®m U

“iew message Add Dequeue Clear queue Refresh

d4819216-2d90-dcd d-Ba45-Fe0257F3Fd54 httpeffosharpoarnermindcrackering.netdna- cdn.com/UploadFile/Autharlmage/p k2060602114707 jpg 52

How it works...

In this recipe, we have added Queue message output binding and made the following
changes to the code:

¢ Added a reference to the Newtonsoft.Json NuGet library in the project. json
file

¢ Added a new parameter named out string objUserProfileQueuelItem
which is used to bind the URL of the profile picture as a Queue message content

[24]

Chapter 1

e We have also made the Run method synchronous by removing async as it doesn't
allow us to have out parameters

There's more...

The project. json file contains all the references of the external libraries that we may use
in the Azure Function.

Framework 4.6.

0 At the time of writing, Azure Function Runtime only supports .NET

See also

e The Persisting employee details using Azure Storage table Output Bindings recipe

Storing the image in Azure Blob storage

Let's learn how to invoke an Azure Function when a new queue item is added to the Azure
Storage Queue service. Each message in the Queue is the URL of the profile picture of a user
which will be processed by the Azure Functions and will be stored as a Blob in the Azure
Storage Blob service.

Getting ready

In the previous recipe, we have learnt how to create Queue output bindings. In this recipe,
you will grab the URL from the Queue, create a byte array, and then write it to a Blob.

This recipe is a continuation of the previous recipes. Please make sure that you implement
them.

[25]

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings

How to do it...

1. Create a new Azure Function by choosing the QueueTrigger-C# from the
templates.
2. Provide the following details after choosing the template:
e Name your function: Please provide a meaningful name such
as CreateProfilePictures.
* Queue name: Name of the Queue which should be monitored by the
Azure Function. Our previous recipe created a new item for each of the
valid requests coming to the HTTP trigger (named RegisterUser)
into the userprofileimagesqueue Queue. For each new entry of a
queue message to this Queue storage, the CreateProfilePictures
trigger will be executed automatically.
¢ Storage account connection: Connection of the storage account where
the Queues are located.

3. Review all the details, and click on Create to create the new function.

4. Navigate to Integrate tab then click on New Output then choose Azure Blob
Storage then click on the Select button.

5. In the Azure Blob Storage output section, provide the following:
¢ Blob parameter name: Set it to outputBlob

o Path: Set it to userprofileimagecontainer/{rand-guid}

¢ Storage account connection: Choose the storage account where you
would like to save the Blobs:

Azure Blob Storage output (outputBlob) delete

Blob pararneter narne € Path €

outputBlob userprofileimagecontainerf{rand-gquid}

Use function return value

Storageaccount connection €

azurefunctionscookbook_STORAGE ¥ onew

[26]

Chapter 1

6. Once you provide all the preceding details, click on the Save button to save all
the changes.

7. Replace the default code of the run. csx file with the following code:

using System;
public static void Run(Stream outputBlob, string myQueueltemn,
TraceWriter log)
{

byte[] imageData = null;

using (var wc = new System.Net.WebClient ())

{

imageData = wc.DownloadData (myQueueltem) ;

}
outputBlob.WriteAsync (imageData, 0, imageData.Length);
}

8. Click on the Save button to save the changes.

9. Let's go back to the RegisterUser function and test it by providing firstname,
lastname, and ProfilePicUrl fields as we did in the Saving the profile images to
Queues using Queue output bindings recipe.

10. Now, navigate to the Azure Storage Explorer, and look at the Blob container

userprofileimagecontainer. You will find a new Blob as shown in the
following screenshot:

T c + ¢ ' Db m = X O

Upload Download Open Mew Folder Copy URL Select all Copy Paste Rename Delete Refresh

S T userprofileimagecontainer Sear

Marne | Last Modified Blob Type Content Type

e33-lecl-42d1-3479 Sun, 2 7 Black Blab

applicati t-strearn

11. You can view the image in any tool (such as MS Paint or Internet Explorer).

[27]

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings

How it works...

We have created a Queue trigger that gets executed as and when a new message arrives in
the Queue. Once it finds a new Queue message, then it reads the message, and as we know
the message is a URL of a profile picture. The function makes a web client request and

downloads the image data in the form of byte array, and then writes the data into the Blob

which is configured as an output Blob

There's more...

The parameter rand-guid, will generate a new GUID and is assigned to the Blob that gets
created each time the trigger is fired.

It is mandatory to specify the Blob container name in the Path parameter
of the Blob storage output binding while configuring the Blob storage
output. Azure Functions creates one automatically if it doesn't exist.

You can use Queue messages only when you would like to store messages
which are up to 64 KB. If you would like to store the messages greater
than 64 KB, you need to use the Azure Service Bus.

See also...

The Building a backend Web API using HTTP triggers recipe

The Persisting employee details using Azure Storage table output bindings recipe
The Saving the profile images to Queues using Queue output bindings recipe
The Storing the image in Azure Blob storage recipe

[28]

Chapter 1

Cropping an image using ImageResizer
trigger

In the recent times, with the evolution of smart phones with high-end cameras, it's easy to
capture a high-quality picture of huge sizes. It's good to have good quality pictures to
refresh our memories. However, as an application developer or administrator, it would be a
pain to manage the storage when your website is popular and you expect most of the users
to get registered with a high-quality profile picture. So, it makes sense to use some libraries
that could reduce the size of the high-quality images and crop them without losing the
aspect ratio so that the quality of the image doesn't get reduced.

In this recipe, we will learn how to implement the functionality of cropping the image and
reducing the size without losing the quality using one of the built-in Azure Function
templates named ImageResizer.

Getting ready

In this recipe, you will learn how to use a library named ImageResizer. We will be using
the library for resizing the image with the required dimensions. For the sake of simplicity,
we will crop the image to the following sizes:

e Medium with 200*200 pixels
e Small with 100*100 pixels

[29]

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings

How to do it...

1. Create a new Azure Function by choosing the Samples in the Scenario drop-
down as shown in the following screenshot:

A function that creates resized images whenever a blob =
added to a spedified container

2. Select the ImageResizer-CSharp template as shown in the preceding screenshot.

3. Once you have selected the template, the portal prompts you to choose the
following parameters:
e Name your Function: Provide a meaningful name. For this example, I
have provided CropProfilePictures.

¢ Azure Blob Storage trigger (image):

e Path: Provide the path of the container (in our case
userprofileimagecontainer) which contains all the
blobs that are created by the Queue trigger.
CreateProfilePictures in the previous recipe

e Storage account connection: Select the connection string

of the storage account where the container and Blobs are
stored

[30]

Chapter 1

e Azure Blob Storage output (imageMedium):
¢ Path: Please provide the name of the container where the
resized images of size medium 200*200 are to be stored.
In this case, userprofileimagecontainer-md.

¢ Storage account connection: Select the connection string
of the storage account where the Blobs are stored.

e Azure Blob Storage output (imageSmall):
e Path: Please provide the name of the container where the
resized images of size small 100*100 are to be stored. In
this case, userprofileimagecontainer—sm.

¢ Storage account connection: Select the connection string
of the storage account where the Blobs are stored.

4. Review all the details and click on Create as shown in the following screenshot:

Name your function

CropProfilePictures|

Azure Blob Storage trigger (image)

Path € Storageaccount connection €

userprofileirmagecontainerf{name} azurefunctionscookbook_STORAGE v nEw

Azure Blob Storage output (imageSmall)

Path € Storageaccount connection €

userprofileimagecantainer-smfAname} azurefunctionscookbook_STORAGE v nEw

Azure Blob Storage output (imageMedium)

Path € Storageaccount connection €

userprofileirmagecontainer-rad/{name} azurefunctionscookbook_STORAGE v nEw

[31]

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings

5. Fortunately, the ImageResizer Azure Function template provides most of the
necessary code for our requirement of resizing the image. I just made a few minor

tweaks. Replace the default code with the following code and the code should be
self-explanatory:

using ImageResizer;

public static void Run(
Stream image, Stream imageSmall, Stream imageMedium)
{
var imageBuilder = ImageResizer.ImageBuilder.Current;
var size = imageDimensionsTable[ImageSize.Small];
imageBuilder.Build(image, imageSmall, new ResizeSettings
(size.Iteml, size.Item2, FitMode.Max, null), false);
image.Position = 0;
size = imageDimensionsTable[ImageSize.Medium];
imageBuilder.Build (image, imageMedium, new ResizeSettings
(size.Iteml, size.Item2, FitMode.Max, null), false);

public enum ImageSize
{
Small, Medium

private static Dictionary<ImageSize, Tuple<int, int>>

imageDimensionsTable = new Dictionary<ImageSize, Tuple<int,
int>> ()

{

{ ImageSize.Small, Tuple.Create (100, 100) 1},

{ ImageSize.Medium, Tuple.Create (200, 200) }
}i

6. Let's run a test on the RegisterUser function by submitting a sample request
with firstname, lastname, and a ProfilePicUrl. I have used the same inputs
that we have used in our previous recipes.

[32]

Chapter 1

7. In the Azure Storage Explorer, I can see two new Blob containers
userprofileimagecontainer-md and userprofileimagecontainer—smas
shown in the following screenshot:

r |

B azurefunctionscookbook (External)

|

& Blob Containers
& $logs
B azure-webjobs-hosts

= userprofileimagecontainer

& userprofileimagecontainer-md
=]

8. I can even view the corresponding cropped versions in each of those containers.
Following are the three versions of the image that we have used as input:

Original

Medium (200*200)

Small (100*100)

How it works...

We have created a new function using one of the samples named ImageResizer that the
Azure Function template provides.

[33]

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings

The ImageResizer template takes input from userprofileimagecontainer Blob
container where the original Blobs reside. Whenever a new Blob is created in the
userprofileimagecontainer Blob, the function will create two resized versions in each
of the userprofileimagecontainer-md and userprofileimagecontainer-sm
containers automatically.

Following is a simple diagram that shows how the execution of the functions is triggered
like a chain:

Create medium picture in Check If a new Blob is Created in Create small piclure in
userprofileimagecontainer

userprofileimagecontainer-md container
test

userprofileimagecontainer-sm container

CropProfilePictures

See also

The Building a backend Web API using HTTP triggers recipe
The Persisting employee details using Azure Storage table output bindings recipe

The Saving profile picture path to Azure Storage Queues using Queue output bindings
recipe

The Storing the image in Azure Blob storage recipe.

[34]

Working with Notifications
Using SendGrid and Twilio
Services

In this chapter, we will look at the following:

¢ Sending an email notification to the administrator of the website using the
SendGrid service
Sending an email notification to the end user dynamically

Implementing email logging in the Blob storage

Modifying the email content to include an attachment

Sending SMS notification to the end user using the Twilio service

Introduction

For every business application to run it's business operations smoothly, one of the key
features is to have a reliable communication system between the business and the
customers. The communication channel might be two-way, either sending a message to the
administrators managing the application or sending alerts to the customers via emails or
SMS to their mobile phones.

Azure has integrations with two popular communication services named SendGrid for
emails and Twilio for working with SMS. In this chapter, we will be using both the
communication services to understand how to leverage their basic services to send
messages between the business administrators and the end users.

Working with Notifications Using SendGrid and Twilio Services

Sending an email notification to the
administrator of the website using the
SendGrid service

In this recipe, you will learn how to create a SendGrid output binding and send an email
notification to the administrator with static content. In general, there would be only
administrators, so we will be hardcoding the email address of the administrator in the To
address field of the SendGrid output (message) binding.

Getting ready

We will perform the following steps before moving to the next section:

1. Create a SendGrid account API key from the Azure Management portal.
2. Generate an API key from the SendGrid portal.

Creating a SendGrid account

1. Navigate to Azure Management portal and create a SendGrid Email Delivery
account by searching for it in the Marketplace, as shown in the following
screenshot:

2 sendgrid a ®

SendGrid Email Delivery

TIRE T TS [Ci=i—- 1

Compute >

[36]

Chapter 2

2. In the SendGrid Email Delivery blade, click on the Create button to navigate to
Create a New SendGrid Account. Select free in Pricing tier and provide all the
other details and click on the Create button, as shown in the following
screenshot:

N

Create a New SendGrid Acc... B8 3

CREATE

* Name

| arurecookbook

* Password @

| BEEEREERRRE

* Confirm Password

* Subscription

Developer Program Benefit bl

* Resource group ©
Y = -
) Create new '® Use existing

AzureFunctionCookBook hd

* Pricing tier
free

Promotion Code @

Pinto d card

Automation options

[371]

Working with Notifications Using SendGrid and Twilio Services

3. Once the account is created successfully, navigate to SendGrid Accounts. You
can use the search box available on the top, as shown in the following screenshot:

ju ._,_..D sendgnd

SendGrid Accounts C

Search sendgrid in all resources
aQ PP
Search sendgrid in resource groups

Searching 1 of 2 subscriptions. Search all subscriptions.

L] Help us improve search!
| H Actvitylog

4. Navigate to Settings, choose Configurations , and grab Username and
SmtpServer from the Configurations blade, as shown in the following

screenshot:

Configurations

arurecookbook

USERNAME

azure_45 -, .

PASSWORD

Your Password

SMTP SERVER

smtp.sendgrid.net .

[38]

Chapter 2

Generating the SendGrid API key

1. In order to utilize the SendGrid account by the Azure Functions runtime, we
need to provide the SendGrid API key as input to the Azure Functions. You can
generate an API key from the SendGrid portal. Let's navigate to the SendGrid
portal by clicking on the Manage button in the Essentials blade of SendGrid
Account, as shown in the following screenshot:

78 azurecookbook

L sena coount

[] Manage | [Delete " Change password F Reset Password
Essentials ~ éﬁ

Resource group
AzureFunctionCookBook

Cizbic

2. In the SendGrid portal, click on API Keys under the Settings section of the left-
hand side menu, as shown in the following screenshot:

ﬁ Settings e

3. In the API Keys page, click on Create API Key, as shown in the following
screenshot:

APl Keys

J Get started creating APl Keys
APl keys help protect the sensitive areas of your Se nt (e.g. contacts and account settings). To control and limit access of AP

users, you can create multiple APl keys, each with d

[39]

Working with Notifications Using SendGrid and Twilio Services

4. In the Create API Key popup, provide a name and choose API Key Permissions
and click on the Create & View button.

5. After a moment, you will be able to see the API key. Click on the key to copy it to
the clipboard, as shown in the following screenshot:

o

AP| Key Created

Please copy this key and save it somewhere safe.

For security reasons, we cannot show it to Yyou adain

SG.IZXNnZ_PS5adDFh4fT6jaQ 1 d ILIMmMAKSE7x6DgAOpWzmPNRo

=

Configuring the SendGrid API key with the Azure
Function app
1. Create a new App settings in the Azure Function app by navigating to the

Application settings blade under the Platform features section, of the function
app, as shown in the following screenshot:

SGAgDUetFsT1eDf3rHeyFyz... Slot setting

Value Slot setting

2. Click on the Save button after adding the App settings in the preceding step.

[40]

Chapter 2

How to do it...

1. Navigate to the Integrate tab of the RegisterUser function and click on the
New Output button to add a new output binding.

2. Choose the SendGrid binding and click on the Select button to add the binding.

3. Provide the following parameters in the SendGrid output (message) binding;:

e Message parameter name: Leave the default value, which is message.
We will be using this parameter in the Run method in a moment.

¢ SendGrid API Key: Provide the App settings key that you have
created in Application settings.

e To address: Provide the email address of the administrator.

e From address: Provide the email address from where you would like
to send the email. In general, it would be something like
donotreply@example.com.

e Message subject: Provide the subject that you would like to have in the
email subject.

e Message Text: Provide the email body text that you would like to have
in the email body.

4. This is how the SendGrid output (message) binding should look like after
providing all the fields:

SendGrid output (message)

Message parameter narne € SendGrid AP| Key €

rressage SendGridpikey

Use function return value
Frorn address €

To address € | | o= il
¥ [i_|
Message Text €
Message subject € Hi Adrnin, & new user got registered successfully, Thar

Mewe User got Registered Successfully

“ Cancel

[41]

Working with Notifications Using SendGrid and Twilio Services

5. Once you review the values, click on Save to save the changes.

6. Navigate to the Run method and make the following changes:
¢ Add a new reference for SendGrid and also the namespace
SendGrid.Helpers.Mail.

¢ Add a new out parameter message of type Mail.

¢ Create an object of type Mail. We will understand how to use this
object in the next recipe.

7. The following is the complete code of the Run method:

#r "Microsoft.WindowsAzure.Storage"
#r "SendGrid"

using System.Net;

using SendGrid.Helpers.Mail;

using Microsoft.WindowsAzure.Storage.Table;

using Newtonsoft.Json;

public static void Run (HttpRequestMessage req,
TraceWriter log,
CloudTable
objUserProfileTable,
out string
objUserProfileQueueltem,
out Mail message
)

var inputs =
reqg.Content.ReadAsStringAsync () .Result;
dynamic inputJson =
JsonConvert.DeserializeObject<dynamic>
(inputs) ;

string firstname= inputJson.firstname;
string lastname=inputJson.lastname;
string profilePicUrl =
inputJson.ProfilePicUrl;

objUserProfileQueueltem = profilePicUrl;

UserProfile objUserProfile = new

UserProfile (firstname, lastname,profilePicUrl);
TableOperation objTblOperationInsert =
TableOperation.Insert (objUserProfile);
objUserProfileTable.Execute
(objTblOperationInsert);

message = new Mail();

[42]

Chapter 2

public class UserProfile : TableEntity
{

public UserProfile(string firstname, string lastname, string

profilePicUrl)
{
this.PartitionKey = "pl1";
this.RowKey = Guid.NewGuid() .ToString();;
this.FirstName = firstname;
this.LastName = lastname;
this.ProfilePicUrl = profilePicUrl;

}

public UserProfile() { }

public string FirstName { get; set; }
public string LastName { get; set; }
public string ProfilePicUrl {get; set;}

}

8. Now, let's test the functionality of sending the email by navigating to the
RegisterUser function and submitting a request with the some test values, as

follows:

"firstname": "Bill",

"lastname": "Gates",
"ProfilePicUrl":"https://upload.wikimedia.org/
wikipedia/commons/thumb/1/19/
Bill_Gates_June_2015.jpg/220px—
Bill_Gates_June_2015.jpg"
}

How it works...

The aim of this recipe is to send a notification via email to an administrator, updating that a
new registration got created successfully.

We have used the one of the Azure Function experimental templates named SendGrid as a
Simple Mail Transfer Protocol (SMTP) server to send the emails by hardcoding the
following properties in the SendGrid output (message) bindings:

From the email address
To the email address
Subject of the email
Body of the email

[43]

http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg

Working with Notifications Using SendGrid and Twilio Services

SendGrid output (message) bindings will use the API key provided in App settings to
invoke the required APIs of the SendGrid library to send the emails.

See also

e The Sending an email notification to the end user dynamically recipe in this chapter

Sending an email notification to the end user
dynamically

In the previous recipe, we hard coded most of the attributes related to sending an email to
an administrator as there would be just one administrator. In this recipe, we will modify the
previous recipe that sends emails to the user itself that sends a Thank you for
registration email.

Getting ready

Make sure that the following are configured properly:

¢ The SendGrid account has been created and an API key is generated in the
SendGrid portal

e An App settings is created in the Application settings of the function app
e The App settings key is configured in the SendGrid output (message) bindings

How to do it...

1. Navigate to the RegisterUser function and make the following changes in the
run.csx file.

2. Add a new string variable that accepts new input parameter named email from
the request object:

string firstname= inputJson.firstname;
string lastname=inputJson.lastname;
string profilePicUrl = inputJdson.ProfilePicUrl;

[44]

Chapter 2

string email = inputJson.email;

UserProfile objUserProfile = new
UserProfile (firstname, lastname,profilePicUrl, email) ;

3. Add the following code immediately after instantiating the message object:

message = new Mail();

message.Subject = "New User got registered
successfully.";

message.From = new Email ("donotreply@example.com");

message .AddContent (new Content ("text/html", "Thank you so much
for getting registered to our site."));

Personalization personalization = new Personalization();
personalization.AddTo (new Email (email));
message.AddPersonalization (personalization);

public class UserProfile : TableEntity
{

public UserProfile(string firstname, string lastname, string
profilePicUrl, string email)

{

this.ProfilePicUrl = profilePicUrl;
this.Email = email;

public string ProfilePicUrl {get; set;}
public string Email { get; set; }

Instead of hardcoding, we are passing the values of the Subject, body
(content), and From address dynamically via code. It's also possible to
change the values and personalize based on the needs. Note that the email
will be sent to the end user who got registered by providing an email
address.

[45]

Working with Notifications Using SendGrid and Twilio Services

4. Let's run a test by adding a new input field email to the test request payload,
shown as follows:

{

"firstname": "Praveen",
"lastname": "Sreeram",
"email":"example@gmail.com",
"ProfilePicUrl1l":"A Valid url here"

}

5. This is the screenshot of the email that I have received:

Fri 5/26/2017 2:37 P
donotreply@example.com

Mewr User got registered successtully.

To ¢

Thank you so much for getting registered to our site.

How it works...
We have updated the code of the RegisterUser function to accept another new parameter

named email.

The function accepts the email parameter and sends the email to the end user using the
SendGrid API. We have also configured all the other parameters, such as the From address,
Subject, and body (content) in the code so that it is customized dynamically based on the
requirements. We can also clear the fields in the SendGrid output (message) bindings, as
shown in the following screenshot:

[46]

Chapter 2

SendGrid output (message) delete

Message pararneter name € SendGrid API Key €
rmessage E SendGridapikey
Use function return value
Frorm address €
To address € Frorm address
To address
Message Text €
Message suhjectﬂ Message Text
Message subject

Cancel

The values specified in the code will take precedence over the values
specified in the preceding step.

There's more...

You can also send HTML content in the body to make your email more attractive. The
following is a simple example, where I just applied bold () tag to the name of the end

user:

message.From = new Email ("donotreply@example.com");

message.AddContent (new Content ("text/html", "Thank you " + firstname + "
" + lastname +" so much for getting registered to our site."));
Personalization personalization = new Personalization();

[47]

Working with Notifications Using SendGrid and Twilio Services

The following is the screenshot of the email with my name in bold:

Fri 5/26/2017 557 PR
donotreply@example.com
Mewr User got registered successtully,

To

Thank yoo much for getting registered to our site.

See also

e The Sending an email notification to the administrator of the website using the
SendGrid service recipe in Chapter 2, Working with Notifications Using SendGrid and
Twilio Services

Implementing email logging in the Blob
storage

In most of the applications, you would have requirements of sending emails in the form of
notifications, alerts, and so on to the end user. At times, users might complain that they
haven't received any email even though we don't see any error in the application while
sending such notification alerts.

There might be multiple reasons why users might not have received the email. Each of the
email service providers has different spam filters that might block the emails in sending
them to the end user's inbox. These emails might have some important information that the
users might need. It makes sense to store the email content of all the emails that are sent to
the end users, which could be used for retrieving the data at a later stage or for
troubleshooting any unforeseen issues.

You will learn how to create a new email log file with the . 1og extension for each new
registration. This log file could be used as a redundancy to the data stored in the Table
storage.

In this recipe, you will learn how to store the email log files as a Blob in a storage container
with the data inputted by the end user while getting registered.

[48]

Chapter 2

How to do it...

1. Navigate to the Integrate tab of the RegisterUser function, click on New
Output, and choose Azure Blob Storage.

2. Provide the required parameters in the Azure Blob Storage output (outputBlob)
section, as shown in the following screenshot. Note the . 1og extension in the
Path field:

Azure Blob Storage output (outputBlob) delet=

Blob pararneter narne € Path €
outputBlob userregistrationemaillogs/frand-quid}.log

Usefunction return value

Storage account connection €

azurefunctionscookbook_STORAGE v onew

3. Navigate to the code editor of the run. csx file and make the following change:
1. Add a new parameter outputBlob of type TextWriter to the Run
method.

2. Add a new string variable named emailContent. This variable is used
to frame the content of the email. We will also use the same variable to
create the log file content that is finally stored in the blob.

3. Frame the email content by appending the required static text and the
input parameters received in Request body:

public static void Run (HttpRequestMessage req,
TraceWriter log,

CloudTable objUserProfileTable,

out string objUserProfileQueueltem,

out Mail message,

TextWriter outputBlob

string email = inputJson.email;
string profilePicUrl = inputJson.ProfilePicUrl;
string emailContent;

[49]

Working with Notifications Using SendGrid and Twilio Services

emailContent
lastname +" for your registration.

" +
"Below are the details that you have provided us

"+ "First name: " + firstname + "
" +
"Last name: " + lastname + "
" +
"Email Address: " + email + "
" +
"Profile Url: " + profilePicUrl + "

" + "Best Regards," + "
" + "Website Team";
message.AddContent (new
Content ("text/html",emailContent)) ;

"Thank you " + firstname + " " +

outputBlob.WriteLine (emailContent);

4. Run a test using the same request payload that we have used in the previous

recipe.

5. After running the test, the log file got created in the container named
userregistrationemaillog

T P

Upload Download Open Mews Folder

userregistrationernaillogs

0’
Copy URL

- Ty =h X &

Mj44bf31Bﬂ—aﬁﬂ—4f80—8b0b—??4c623h?E?E.IDQ-Not... - O X
File Edit Faormat Wiew Help

ﬁhank you »Prawveen Sreeram for wour
registration.<bra»cbri»Below are the details that wou
have prowvided usc<bra<brach>First name: ¢/b>
Praveenc<brs»<ba»lLast name: Sreeram<brocb»Emall
Address:»

i = B = mi B M<br»¢b»Profll
e Url:

https://upload.wikimedia. org/wikipedia/commons fthum
b/1/19/Bill_Gates_June_2815.]peg/f228px-

Bill Gates_June_2815.jpg<bra<bra<braBest

Regards, cbr>Website Team

How it works...

We have created new Azure Blob output bindings. As soon as a new request is received, the

email content is created and written to a new . 1og file (you can have any other extension)
that is stored as a Blob in the container specified in the Path field of the output bindings.

[50]

Chapter 2

Modifying the email content to include an
attachment

In this recipe, you will learn how to send a file as an attachment to the registered user. In
our previous recipe, we created a log file of the email content. We will send the same file as
an attachment to the email. However, in real-world applications, you might not intend to
send log files to the end user. For the sake of simplicity, we will send the log file as an
attachment.

attachment not exceed 10 MB, though technically, you can have the size of

At the time of writing this, SendGrid recommends that the size of the
0 your email as 30 MB.

Getting ready

This is the continuation of the previous recipe. Go through the previous recipes of this
chapter just in case you are reading this first.

How to do it...

e Make the changes to the code to create the log file with the RowKey of the table.
We will be achieving this using the IBinder interface.

e Send this file as an attachment to the email.

Customizing the log file name using IBinder interface

1. Navigate to the code editor of the RegisterUser function.

2. Remove the TextWriter object and replace it with the variable binder of type
IBinder. This is the new signature of the Run method with the changes
highlighted:

public static void Run (HttpRequestMessage req,
TraceWriter log,
CloudTable objUserProfileTable,
out string objUserProfileQueueltem,
out Mail message,

[51]

Working with Notifications Using SendGrid and Twilio Services

IBinder binder

)

3. Let's grab the data of the new record that's inserted into the Azure Table storage
service. We will be using the GUID (RowKey) of the newly created record in the
Table storage. Make the changes highlighted in the following piece of code:

TableResult objTableResult =
objUserProfileTable.Execute (objTblOperationInsert) ;

UserProfile objInsertedUser =
(UserProfile)objTableResult.Result;

4. As we have removed the TextWriter object, the line of code
outputBlob.WriteLine (emailContent); will nolonger work. Let's replace it
with the following piece of code:

using (var emaillLogBloboutput = binder.Bind<TextWriter> (new
BlobAttribute ($"userregistrationemaillogs/
{objInsertedUser.RowKey}.log")))

{

emaillogBloboutput.WriteLine (emailContent) ;

}

5. Let's run a test using the same request payload that we have used in the previous
recipes.

6. You will see the email log file that is created using the RowKey of the new record
stored in the Azure Table storage, as shown in the following screenshot:

Storage Table Email Logs

R R L e e 2 = = userregistrationermailngs
Cuery Import Expart Add Edit Selectall Column Cptians

Sat, 03 Jun 201

[52]

Chapter 2

Adding an attachment to the email
1. Add the following code to the Run method of the RegisterUser function:

Attachment objAttachment = new Attachment ();
objAttachment.Content = System.Convert.ToBase64String

(System.Text .Encoding.UTF8.GetBytes (emailContent));
objAttachment.Filename = firstname + "_" + lastname + ".log";
message.AddAttachment (objAttachment) ;

2. Let's run a test using the same request payload that we have used in the previous
recipes.
3. This is the screenshot of the email, along with the attachment:

Actions Seledt =
Sak 6372017 433 PM EJ Praveanp_Sreeram.IogI Motepad — [m] x

donctreply@example.com File Edit Format ‘iew Help
Mew User got registered successfully. i‘rhamk you Praveenp Sreeram for your
Ta registration.
cbroBelow are the detalls that you
hawve prowvided us<br»
First name: ¢/b>
Praveenp _Sreeramlog Praveenp
Last name: Sreeramcbr>Email
|_-| 554 bytes Address:

| — = = i micbrs>cb>Profil
e Url:

https://fupload.wikimedia.orgfwikipedia/commens /thum
b/1/15/Bill_Gates_June_2015.jpg/226px-
Bill_Gates_June_2&15.jpg
<bracbraBest

Regards, <broblebsite Team

Thank you Praveenp Sreeram for your regi
Below are the details that you have provided

First name: Praveenp
Last name: Sreeram

Email Address: | | B g o
Profile Url: httpe/upload. wikimedia orgfwl Gatel
Best Regards,

Website Team

There's more...

Actions are not available for all type of output bindings. They're available
only for a few, such as Blob, Queue output bindings, and so on.

[53]

Working with Notifications Using SendGrid and Twilio Services

Sending SMS notification to the end user
using the Twilio service

In most of the previous recipes of this chapter, we have worked with SendGrid triggers to
send the emails in different scenarios. In this recipe, you will learn how to send notifications
via SMS using one of the leading cloud communication platform named Twilio.

0 You can also learn more about Twilio at https://www.twilio.com/.

Getting ready

In order to use the Twilio SMS output (objsmsmessage) binding, we need to do the
following;:

1. Create a trail Twilio account from https://www.twilio.com/try-twilio.

2. After successful creation of the account, grab ACCOUNT SID and AUTH
TOKEN from the Twilio Dashboard, as shown in the following screenshot. We
will create two App settings in the Application settings blade of the function
app for both of these settings:

Home
Console Dashboard
Dashboard
Account Summary
AC94Te2Bdat i93echcBBTocd

@...........................l

[54]

https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio

Chapter 2

3. In order to start sending messages, you need to create an active number within
Twilio, which you can use as the from number that you could use for sending the
SMS. You can create and manage numbers in Phone Numbers Dashboard.
Navigate tohttps://www.twilio.com/console/phone-numbers/incoming and
click on the Get Started button, as shown in the following screenshot:

Phone Numbets Home Fhone Mumbers Manage Mumbers

3 Phone Numbers Dashboard

Manage Numbers

@ | Active Numbers Instantly provision local, national, mobile, and toll-free phone numbers in nearl
Relegsed ShAS, MAMAS, and phone calls.
Numbers
Get Started ‘ Tutorial Docs = | ‘ Learn More
L bl L

4. On the Get Started with Phone Numbers page, click on Get your first Twilio
phone number, as shown in the following screenshot:

Get Started with Phone Numbers

- Getting started with Twilic's phone numbersis easy! Search for local, toll-free, or mobilg

nbers

Er 1D

Getyour first Twilic phone number

5. Once you get your number, it will be listed as follows:

Home Phone Murmbers tanage Mumbers

Phone Numbers

Murber N B Waice URL N
o MLUMBER FRIEMDLY M AME CAPABILITIES
WOIZE FAX M5 MMS
I 1 A0-584-5563 I (410) 394-9663 S =il = R N

JOTOPTTOTT S, TYIES

[551]

https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming

Working with Notifications Using SendGrid and Twilio Services

6. The final step is to verify a number to which you would like to send an SMS. You
can have only one number in your trail account. You can verify a number on the
https://www.twilio.com/console/phone-numbers/verified page. The
following is the screenshot of the list of verified numbers:

Verified Caller |Ds
&

+919849 LN S1984¢ ;

How to do it...

1. Navigate to the Application settings blade of the function app and add two keys
to store TwilioAccountSID and TwilioAuthToken, as shown here:

Tuvilio&ccountsID

TwiilioduthToken

2. Go the Integrate tab of the RegisterUser function and click on New Output
and choose Twilio SMS, as shown in the following screenshot:

[561]

https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified

Chapter 2

Azure Matification Hub

Cancel

SendGrid

Twvilio kA3

3. Click on Select and provide the following values to the Twilio SMS output
(objsmsmessage) bindings. From number is the one that is generated in the
Twilio portal, which we discussed in the Getting Ready section of this recipe:

Twilio SMS output (objsmsmessage) delete

Message parameter narne €

objsmsmessage

Use function return value

Auth Token setting &

TwwiliouthToken

Frorn nurmber €

+14103 49663

Account SID setting €

TwilioAccountSid

To nurnber €

+07 03402

Message text €

Message text

4. Navigate to the code editor and add the following lines of code, highlighted in
bold. In the preceding code, I have hard coded To number. However, in real-
world scenarios, you would dynamically receive the end user's mobile number

and send the SMS via code:

#r "Twilio.Api"

[571

Working with Notifications Using SendGrid and Twilio Services

using Twilio;
public static void Run (HttpRequestMessage req,
TraceWriter log,
CloudTable objUserProfileTable,
out string objUserProfileQueueltem,
out Mail message,
IBinder binder,
out SMSMessage objsmsmessage
)
message.AddAttachment (objAttachment) ;
objsmsmessage= new SMSMessage();
objsmsmessage.Body = "Hello.. Thank you for getting
registered.";

5. Tjust did a test run of the RegisterUser function using the same request
payload.
6. The following is the screenshot of the SMS that I have received:

. Messaging — AirTel

How it works...

We have created a new Twilio account and copied the account ID and App key into the
App settings of the Azure Function app. These two settings will be used by the function
app runtime to connect to the Twilio API for sending the SMS.

For the sake of simplicity, I have hardcoded the phone number in the output bindings.
However, in real-work applications, you would send the SMS to the phone number
provided by the end users.

[581]

Seamless Integration of Azure
Functions with Other Azure
Services

In this chapter, we will cover the following recipes:

¢ Using Cognitive Services to locate faces from the images

Azure SQL Database interactions using Azure Functions

Processing a file stored in OneDrive using an external file trigger

Monitoring tweets using Logic Apps and notifying when popular user tweets

Integrating Logic Apps with Serverless functions

Introduction

One of the major goals of Azure Functions is to make the developers focus on just
developing the application requirements and logic and abstract everything else.

As a developer or business user, you cannot afford to invent and develop your own
applications from scratch for each of your business needs. You would first need to research
about the existing systems and see if they fit for your business requirement. Many times, it
would not be easy to understand the APIs of the other systems and integrate them as
someone else has developed those APIs.

Azure provides many connectors that you could leverage to integrate your business
applications with other systems pretty easily.

Seamless Integration of Azure Functions with Other Azure Services

In this chapter we will learn how easy is to integrate different services that are available in
Azure ecosystem.

Using Cognitive Services to locate faces
from the images

In this recipe, you will learn how to use the Computer Vision API to detect faces within an
image. We will be locating the faces and capture their coordinates and save them in
different Azure Table Storage based on the gender.

Getting ready

To get started, we need to create a Computer Vision API and configure the keys to access
the API in the Azure Function app.

Make sure that you have Azure Storage Explorer installed and have also configured to
access the storage where you are uploading the Blobs.

Creating a new Computer Vision APl account

1. Log in to Azure Management portal. Click on the +icon, choose AI + Cognitive
Services, and choose Computer Vision API, as shown in the following
screenshot:

oft Azure New
New
T Storage T
Web + Mobile
‘ DECSCRE Containers
%> Function Apps Databases
Data + Analytics

Al + Cognitive Services

Intemet of Things

B Dashboard

’ Azure Active Directory

Resource groups Enterprise Integration

B Al resources Security + Identity

Developer tools

[60]

Chapter 3

2. The next step is to provide all the details to create an account, as shown in the
following screenshot. At the time of writing this, Computer Vision API has just
two pricing tiers where I have selected the free one F0O, which allows 20 API calls
per minute and is limited to 5k calls each month:

Pricing ti full prici

FO 20 Calls per minute,

urce graup @
@ Create new @ Use

AzureFunct

the data

Pin to

Create Autornation options

[61]

Seamless Integration of Azure Functions with Other Azure Services

Configuring App settings

1. Once the Computer Vision API account is generated, you can navigate to the
Keys blade and grab any of the following keys, as shown in the following
screenshot:

KEY 1

e233feld6ak

KEY 2

af1etd0a3 67645

2. Navigate to your Azure Function app, create Application settings with the name
Vision_API_Subscription_Key, and use any of the preceding keys as the
value for the new App settings. This key will be used by the Azure Functions
Runtime to connect and consume the Computer Vision Cognitive Service API.

How to do it...

1. Create a new function using one of the default templates named FaceLocator-
CSharp. You can refine the templates by choosing C# in the Language drop-
down and Samples in the Scenario drop-down:

A function that processes images and outputs the bounding
rectangle of faces using Cognitive Services

F# JavaScript

[62]

Chapter 3

2. Once you choose the template, you need to provide the name of the Azure
Function along with the Path and Storage account connection. We will upload a
picture to Azure Blob Storage trigger (image) container (mentioned in the Path
parameter in the following screenshot) at the end of this section:

New Function

Lang
Name:

LocateMaleFemaleFaces

Azure E‘-Ic-bl-Sto rage trigger

Path €

images/{namel.jpg

T
count SHOMA

azurefunctionscookbooks,

Azure Table Storage output

Table name @

MaleFaceRectangles

unt

Note that while creating the function, the template creates one Blob Storage Table
output binding and allows us to provide the name of the Table name parameter.
However, we cannot assign the name of the parameter while creating the
function. We will be able to change it after it is created. Once you have reviewed
all the details, click on the Create button to create the Azure Function.

[63]

Seamless Integration of Azure Functions with Other Azure Services

3. Once the function is created, navigate to the Integrate tab and rename the Table
parameter name of the output binding to outMaleTable then click on the
Save button, as shown in the following screenshot:

Azure Table Storage output (outMaleTable) delet

Table pararneter narne & Table narme 6

outhdaleTable MalefaceRectangle

TUEETORCTaT TeraTh vae

Storage account connection []

azurefunctionscookbook_STORAGE v onew

4. Let's create another Azure Table Storage output binding to store all the
information for women by clicking on the New Output button in the Integrate
tab, selecting Azure Table Storage, and clicking on the Select button. This is how
it looks after providing the input values:

Azure Table Storage output (outputTable)

Table pararneter narne € Table narne €

outFernaleTable faceFeldaleRectangle

Use function return value

Storage account connection 3]

arurefunctionscookbook_STORAGE v onew

Cancel

5. Once you have reviewed all the details, click on the Save button to create the
Azure Table Storage output binding to store the details about women.

6. Navigate to the code editor of the Run method and add the outMaleTable and
outFemaleTable parameters. This is how it should look:

public static async Task Run(Stream image, string name,
IAsyncCollector<FaceRectangle> outMaleTable,
IAsyncCollector<FaceRectangle> outFemaleTable,
TraceWriter log)

[64]

Chapter 3

7. Let's add a condition (highlighted in bold in the following code) to check the
gender and based on the gender, store the information in the respective Table
storage:

foreach (Face face in imageData.Faces)
{
var faceRectangle = face.FaceRectangle;
faceRectangle.RowKey = Guid.NewGuid() .ToString();
faceRectangle.PartitionKey = "Functions";
faceRectangle.ImageFile = name + ".Jjpg";
if (face.Gender=="Female")
{
await outFemaleTable.AddAsync (faceRectangle);
}
else
{
await outMaleTable.AddAsync (faceRectangle);

}

8. Create a new Blob Container named images using Azure Storage Explorer as
shown in the following screenshot:

4 H Storage Accounts @

b B (Development) a3c3
p B (5AS-Attached Services) a3c3
4 B azurefuncticnscookbooks (External) 23c2

Create Blob Container

=i Configure CORS Settings...
B Search From Here
¢ Al Files
M Queu
ER Tables

Refrezh

-

-

[65]

Seamless Integration of Azure Functions with Other Azure Services

9. Let's upload a picture with a male and a female faces to the container
named images using Azure Storage Explorer as shown below.

Bl images X
urces /O F
’] =
Refresh All Upload
ccess Upload Folder ...

nd Attached) Upload Files

mos DB Accounts (Preview)

rage Accounts MName Last Modified
(Development)
[SAS-Attached Services)
azurefunctionscookbaoks (External)
B Blob Containers
B $logs
B azure-webjobs-hosts
B durablefunctionshub-leases

B userregistrationemaillogs

=3 File Shares

10. The function gets triggered as soon as you upload an image. This is the JSON that
was logged in the log console of the function:

{
"requestId":"483566bc-7d4d-45c1-87e2-6£894aaa4c29",
"metadata": { },
"faces": [
{
"age":31,
"gender":"Female",
"faceRectangle": {
"left":535,
"top":182,
"width":165,
"height":165

"age":33,
"gender":"Male",
"faceRectangle": {
"left":373,

[66]

Chapter 3

"top":182,
"width":161,
"height":161
}

]
}

If you are a frontend developer with expertise in HTML5- and canvas-
related technologies, you can even draw squares, which locates the faces
in the image using the information provided by the cognitive services.

11. The function has also created two different Azure Table Storage tables, as shown
here:

Female

faceFeMaleRectangle “m X

[- k| -
B/ L &L+ L @ o = | Bz b + £ B
Query Import Export Add Edit Selectall Column Qp Quiery Impart Export Add Edit Selectz

Partitionkey s | Left Top idth Height R

artitionkey Al Left ap WAt eight

How it works...

Initially, while creating the Azure Function using the face locator template, it creates a Table
storage output binding. We have used it to store the details about all the men. Later, we
created another output Table storage output binding to store the details about all the
women.

While we use all the default code that Azure Function templates provides to store all the
face coordinates in a single table, we just made a small change that checks whether the
person in the photo is male or female and stores the data based on the gender of the person
identified.

[67]

Seamless Integration of Azure Functions with Other Azure Services

Note that the APIs don't guarantee you that they will always provide the
right gender. So, in your production environments, you should have a
fallback mechanism to handle such situations.

There's more...

ICollector and IAsyncCollector are used for the bulk insertion of the
data.

The default code that the template provides invokes the Computer Vision API by passing
the image that we have uploaded to the Blob storage. The face locator templates invoke the
API call by passing the visualFeatures=Faces parameter, which returns information
about the following:

o Age
e Gender
e Coordinates of the faces in the picture

You can learn more about the Computer Vision API at https://docs.
microsoft.com/en-in/azure/cognitive-services/computer-vision/

home.

Use the Environment .GetEnvironmentVariable ("KeyName") function to retrieve the
information stored in the App settings. In this case, the Cal1visionAPI method uses the
function to retrieve the key that is essential for making a request to the Microsoft Cognitive
Services.

It's a best practice to store all the keys and other sensitive information in
App settings of the function app.

[68]

https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home

Chapter 3

Azure SQL Database interactions using
Azure Functions

So far, you have learned how to store data in Azure Storage services such as Blobs, Queues,
and Tables. All these storage services are great for storing non-structured or semi-
structured data. However, we might have requirements for storing data in relational
database management systems such as Azure SQL Database.

In this recipe, you will learn how to utilize ADO.NET API to connect to the Azure SQL
Database and insert JSON data into a table named EmployeeInfo.

Getting ready

Navigate to the Azure Management portal and create the following:

1. Create a logical SQL Server named AzureCookbook in the same resource group
where you have your Azure Functions.

2. Create an Azure SQL Database named Cookbookdatabase by choosing Blank

Database in the Select Source drop-down of the SQL Database blade while
creating the database.

3. Create a firewall rule to your IP address so that you can connect to the Azure
SQL Databases using SQL Server Management Studio (SSMS). If you don't have
SSMS, install the latest version of SSMS. You can download it from https://
docs.microsoft.com/en-us/sql/ssms/download-sgl-server-management—
studio-ssms.

4. Click on the Show database connection strings link in the Essentials blade of
SQL Database, as shown in the following screenshot:

|:'|-l Copy) Restore * Export U Set server firewall ﬂl Delete }\ Connect with...
Server name
Elastic database pool

Location

Southeast Asia
Tags

Subscription {change! Pricing tier

% Di: and sol obl : =
iagnose solve problems Subseription ID Oldest restore point
No restore point available
i Quick start A

[69]

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

Seamless Integration of Azure Functions with Other Azure Services

5. Copy the connection string from the following blade. Make sure that you replace
the your_username and your_password templates with your actual username

and password:

1DEC QDB PHP

L authentication)

Servarstcop: s | N |
acurity Imfo=Falss;U=sar ID ur_us=rnama} ; Pas

6. Open your SSMS and connect to the Azure logical SQL Server that you created in
the previous steps.

7. Once you connect, create a new table named EmployeeInfo using the following
schema:

CREATE TABLE [dbo].[EmployeeInfo] (

[PKEmployeeId] [bigint] IDENTITY(1,1) NOT NULL,
[firstname] [varchar] (50) NOT NULL,

[lastname] [varchar] (50) NULL,

[email] [varchar] (50) NOT NULL,

[devicelist] [varchar] (max) NULL,

CONSTRAINT [PK_EmployeeInfo] PRIMARY KEY CLUSTERED
(

[PKEmployeeId] ASC
)
)

[70]

Chapter 3

How to do it...

1. Navigate to your function app and create a new HTTP trigger using the
HttpTrigger-CSharp template and choose Authorization Level as Anonymous,
as shown in the following screenshot:

HTTP trigger

New Function

SavelSONToSQLAzureDatabase

HTTP trigger

Authorization level @

2. Navigate to the Application settings of the function app, as shown in the
following screenshot:

AzureFunctionCookBooks

Platform features

All subsriptions b
= Function Apps

w f AzurefunctionCookBoolks

- EE Functions

» LocateMaleFemaleFaces

» RegisterUser

Save|SONToS0Ol AzureDatabase

L lmb e

[71]

Seamless Integration of Azure Functions with Other Azure Services

3. In the Application settings blade, under the Connection strings section, create a
new connection string by providing the following values:
e Name of the Connection String: An identifier of the connection string

¢ Value of the Connection String: Paste the connection string that you
have copied from the Show database connection strings section

e Database Type: Select SQL Database

" rnneting strinns

My Connectis

L Databa...

4. Navigate to the code editor of run. csx and replace the default code with the
following;:

#r "System.Data"
#r "System.Configuration"
using System.Net;
using System.Data.SglClient;
using System.Data;
using System.Configuration;
public static async Task<HttpResponseMessage>
Run (HttpRequestMessage req, TraceWriter log)
{
dynamic data = await reqg.Content.ReadAsAsync<object>();
string firstname, lastname, email, devicelist;
firstname = data.firstname;
lastname = data.lastname;
email = data.email;
devicelist = data.devicelist;
SglConnection con =null;
try
{
string query = "INSERT INTO EmployeelInfo (firstname,
lastname, email, devicelist) " + "VALUES (Q@firstname,
@lastname, @email, @devicelist) ";
con = new
SglConnection (ConfigurationManager.ConnectionStrings
["MyConnectionString"].ConnectionString);
SglCommand cmd = new SglCommand (query, con);
cmd.Parameters.Add ("@firstname", SqlDbType.VarChar,
50) .Value = firstname;

[72]

Chapter 3

cmd.Parameters.Add ("@lastname", SglDbType.VarChar, 50)

.Value = lastname;

cmd.Parameters.Add ("@email", SqglDbType.VarChar, 50)
.Value = email;

cmd.Parameters.Add ("@devicelist", SglDbType.VarChar)
.Value = devicelist;

con.Open () ;
cmd.ExecuteNonQuery () ;

}

catch (Exception ex)

{

log.Info(ex.Message);

}
finally

{
if (con!=null)
{

con.Close();

}
return req.CreateResponse (HttpStatusCode.OK, "Hello ");

Note that you need to validate each and every input parameter. For the
sake of simplicity, the code that validates the input parameters is not
included. Make sure that you validate each and every parameter before
you save it into your database.

5. Let's run the HTTP trigger using the following test data right from the
Test console of Azure Functions:

"firstname": "Praveen",
"lastname": "Kumar",
"email": "praveen@example.com",
"devicelist":
"l
{
'Type' : 'Mobile Phone',

'Company': 'Microsoft'
I
{

'Type' : 'Laptop',
'Company': 'Lenovo'

[73]

Seamless Integration of Azure Functions with Other Azure Services

6. A record was inserted successfully, as shown in the following screenshot:

SOLQuerydsql - az.okbookadmin (178))% > EelRe SOLOueryd sgl - not connected 0L

select * from employeeinfo

100% -

T Results 3 Messages
PFEEmployesld

Pravesn Kumar pravesni@esample.com | i Type': "Mobilz Pho...

firstname lastname email devicelist

How it works...

The goal of this recipe was to accept input values from the user and save them to a
relational database where the data could be retrieved later for operational purposes. For
this, we used Azure SQL Database, a relational database offering also known as database as
a service (DBaaS). We have created a new SQL database, created firewall rules that allow
us to connect remotely from the local development workstation using SSMS. We have also
created a table named EmployeeInfo, which can be used to save the data.

We have developed a simple program using the ADO.NET API that connects to the Azure
SQL Database and inserts data into the EmployeeInfo table.

Processing a file stored in OneDrive using
an external file trigger

In the previous recipe, you learned how to process an individual request and store it in
Azure SQL Database. At times, we might have to integrate our custom applications with
different CRMs, which would not be exposed to other systems in general. So in these cases,
people might share the CRM data via Excel sheets or JSON in some external file storage
systems like OneDrive, FTP, and so on.

[74]

Chapter 3

In this recipe, you will learn how to leverage the Azure Function Runtime and its templates
to quickly integrate Azure Functions with OneDrive, retrieve the JSON file, process it, and
store the data into Azure SQL Database.

At the time of writing this, external file triggers are in an experimental
state. It's not suggested to use them in production yet.

Getting ready

We will perform the following steps before moving to the How to do it... section:

1. Create a OneDrive account at https://onedrive.live.com/. We will authorize
Azure Functions to use this account.

2. Create a folder named CookBook. We will be uploading the JSON file to this
folder. As soon as a new . json file is uploaded, the Azure Function will be
triggered.

How to do it...

1. Create a new Azure Function using the default templates ExternalFileTrigger-
CSharp, as shown in the following screenshot:

\’/ External file “igger

A function that will be run whenever a file is added to an
external file store

Batch | C# | F# JavaScript

[75]

https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/

Seamless Integration of Azure Functions with Other Azure Services

2. Provide a meaningful name and enter a valid path that you have created in your
OneDrive account, as shown in the following screenshot:

\'f, External file trigger

New Function

ProcessISOMNFile FromOneDirive

External File (Preview) trigger
Path

Cookbook/fnams)

External File connection €

External File (Preview) output 8

Path

3. Click on the new button highlighted in the preceding screenshot to authorize
access to the Azure Function Runtime from your OneDirive.

[76]

Chapter 3

4. In Add external file connection, choose OneDrive in the API drop-down, and
click on the Configure required settings button to link External Connections:

et 1AL " i L L R E A M E F o b b ol

B X External Connections

. Create Mew

Mo results

5. As you don't have any existing connections, you need to click on the Create New
button of the preceding step, which would take you through a set of operations
that prompts you to enter your OneDrive account and click on the Authorize
button. Clicking on the Authorize button lets Azure Functions access your
OneDrive account. Repeat the same steps for the External File (Preview) output
($return) section's External File connection drop-down, as shown in the
following screenshot, and click on the Create button to create the Azure Function.
Let the value of the Path be as it is. We will not need the External File (Preview)
output ($return) binding. We will delete it in a moment.

6. Once you are ready, click on the Create button to create the Azure Function.

7. Once the Azure Function is created, navigate to the Integrate tab, click on the
External File (Preview) ($return) output binding, as shown in the following
screenshot:

L& Advariced editor

Cutputs @&

External File [Prewiew) [Freturn)

=+ HMew Output

[77]

Seamless Integration of Azure Functions with Other Azure Services

8. The ExternalFileTrigger-CSharp Azure Function template creates a default
output binding. We don't need it for our example. Let's delete the output
bindings by clicking on the delete button highlighted in the following screenshot:

External File (Preview) output| *

Path €

onedrive_ONEDRIVE A

9. Navigate to the code editor of the run. csx file and replace the default code with
the following code then click on the Save button. In this code sample, we are just
outputting the elements of the JSON file that we uploaded to the OneDrive. In
real-time scenarios, you might have to save them to a persistent medium, such as
database that is not demonstrated in this example:

#r "Newtonsoft.Json"

using Newtonsoft.Json;

using System;

public static void Run(string inputFile, string name,
TraceWriter log)

{

log.Info ($"C# External trigger function processed file: " +
name) ;
var jsonResults = JsonConvert.DeserializeObject<dynamic>

(inputFile);
for (int nIndex=0;nIndex<jsonResults.Count;nIndex++)
{
log.Info(Convert.ToString (jsonResults[nIndex].firstname
)) i
log.Info(Convert.ToString (jsonResults[nIndex].firstname
)) i
log.Info(Convert.ToString (jsonResults[nIndex].devicelist
)) i

[78]

Chapter 3

10. Let's create a JSON file that has all the data related to the employee contact
information and the details of the devices that he/she possesses. This is the
structure of the JSON content:

{
"firstname": "Srikaracharya",
"lastname": "Vatkanambi",
"email": "vsrikar@gmail.com",
"devicelist":
[
{ "DeviceType": "iPhone",
"Color":"white"
}V
{ "DeviceType": "Laptop",
"Color":"Black"
}
1
}

11. Thave created a sample . json file with three test records and uploaded them to
my OneDrive account, as shown in the following screenshot:

OneDrive
/O Search everything + MNew $ Upload -~ & Share i Download
OneDrive Files » CookBook
Files
Recent
Fhotos </>
Shared
Recycle bin

Employeelnfojson

s ploy J

[79]

Seamless Integration of Azure Functions with Other Azure Services

12. As soon as the file is uploaded to the OneDrive, the function gets triggered and
prints the contents of the file in the Azure Function Logs, as shown in the
following screenshot:

Logs
—
ZA17-BE-1AT13:39:41. 6595 C# External trigger function processed file: EmployeeInfo
ZA17-8E-18T13:32:41. 726 srikaracharya
MA1T7-BE-1AT12:39:41, 726 Watkanambi
2R17F-BE-1AT12:39:41. 741 [
1
"DeviceType": "IFhone",
"Color": "White"

"DeviceType": "Laptop",
"¢olor": "BElack"

]
217-86-18T13:39:41. 741 &nil
ZA17-8E-1AT13:39:41. 741 Hammi
ZA17-BE-1AT13:39:41. 741 [
1
"DeviceType": "sSmartPhone",
"Color": "White"

"DeviceType": "Laptop”,
"Colart: "Red"

]
PA1TF-BE-18T13:32:41. 741 manohar
2A17-BE-18T13:32:41. 741 ventrapragada
ZA17-8E-18T13:39:41. 741 [

1

"DeviceType": "BlackBerry",

[801]

Chapter 3

Monitoring tweets using Logic Apps and
notifying when popular users tweet

One of my colleagues who works for a social grievance management project is responsible
for monitoring the problems that users post on social platforms such as Facebook, Twitter,
and so on. He was facing the problem of continuously monitoring the tweets posted on his
customer's Twitter handle with specific hashtags. His major job was to respond quickly to
the tweets by users with a huge follower count, say, users with more than 50K followers. So,
he was looking for a solution that keeps monitoring a particular hashtag and alerts him
whenever an user with more than 50K followers tweets so that he can quickly have his team
respond to that user.

Note that for the sake of simplicity, we will have the condition to check for
0 200 followers instead of 50K followers.

Before I knew about Azure Logic Apps, I thought it would take a few weeks to learn,
develop, test, and deploy such a solution. Obviously, it would take a good amount of time
to learn, understand, and consume Twitter (or any other social channel) API to get the
required information and build an end-to-end solution that solves the problem.

Fortunately, after learning about Logic Apps and its out-of-the-box connectors, it hardly
takes 10 minutes to design a solution for the problem that my friend has described.

In this recipe, you will learn how to design a logic app that integrates with Twitter (for
monitoring tweets) and Gmail (for sending emails).

Getting ready

We need to have the following to work with this recipe:

e A valid Twitter account
e A valid Gmail account

While working with the recipe, we will need to authorize Azure Logic Apps to access your
accounts.

[81]

Seamless Integration of Azure Functions with Other Azure Services

How to do it...
We will go through the following steps:

1. Create a new Logic App.
2. Design the Logic app with Twitter and Gmail connectors.
3. Test the Logic App by tweeting the tweets with the specific hashtag.

Create a new Logic App

1. Log in to the Azure Management portal, click on New, choose Web + Mobile,
and select Logic App, as shown in the following screenshot:

New

2 Search the Marketplace
. App Services
Azure Marketplace Seeall Featured
Function Apps

Get started

Dashboard
Recently created

Azure Active Directory Compute

Resource groups Networking

Storage
All resources

Web + Mobile
|3

Containers

Search senvices

DevOps Projects Databases

[82]

Chapter 3

2. In the Create logic app blade, once you provide the Name of the Logic App,
Resource group, Subscription, and Location, click on the Create button to create
the Logic App:

Create logic app

Mame

NotifyWhenTweetedByPopularUser

Subsonphon

Resource group @&
® Create new @ Use existing

AzureFunctionCookBooks

Location

South Central US A

Log Analytics @
Off

‘ You can add triggers and actions to
your Logic App after creation.

Pin to dashboard

[83]

Seamless Integration of Azure Functions with Other Azure Services

Designing the Logic App with Twitter and Gmail
connectors

1. Once created, navigate to the Logic App Designer and choose Blank Logic App,
as shown in the following screenshot:

Choose aternplate below to create wour Logic &pp.

Category . all ™ Sort by

Blank Logic App

DEVELQPMENT TOOLS +

+. Logic&pp De

<> Log

Correlated in- m

2. Assoon as you choose Blank Logic App, you will be prompted to choose
Connectors, as shown in the following screenshot:

‘ S Search all connectors and triggers

Connectors See maore

o

Request/ Schedule Service Bus Twwitter Office 365 SharePoint FTF

Response Qutlook
Dywhamics SFTP Salesforce R55 OneDrive Dropbox Azre
365 Queues

[84]

Chapter 3

3. In the Connectors list, click on Twitter. Once you choose Twitter, you will be
prompted to connect to Twitter by providing your Twitter account credentials. If
you have already connected, it will directly show you the list of Triggers
associated with the Twitter connector, as shown in the following screenshot:

& Search all triggers

Triggers [1] Actions [9

Tuvitker
Wihern a new tweet is posted

TELL U5 WHAT ¥OU MEED
@ Help us decide which connectors ar{:i’triggers to add next with Uservoice

4. Once you click on the When a new tweet is posted trigger, you will be prompted
to provide Search text (for example, hashtag, keywords, and so on) and the
Frequency of which you would like the Logic App to poll the tweets. This is how
it looks after you provide the details:

When a new tweet is posted (i
*Search text
#ArureFunctions
How often do you want to check for items?
*Interva * Frequency
3 Minute R
Connected to PrawinSreeram. Change connection

[85]

Seamless Integration of Azure Functions with Other Azure Services

5. Let's add a new condition by clicking on Next Step and then clicking on Add a
condition, as shown in the following screenshot:

+ Mew step

T I

Add an action | Add a condition Moaore

6. Assoon as you click on Add a condition, the following screen will be displayed,
where you can choose the values for the condition and choose what you would
like to add when the condition evaluates to true or false:

N
Candition
‘ Choose awalue ‘ | | ‘ Chaoose awalue
Add dynamic content [=]
Edit in advanced mode Collapse condition

7. When you click on the Choose a value input field, you will get all the parameters
on which you could add a condition; in this case, we need to choose Followers
count, as shown in the following screenshot:

*Frequency
| Minute S fall x

Connected ta Prawinireeram. Change Wihen a new tweet is posted

Ilﬂ Followers count

Murmber of followers

Condition " Criginal tweet user followers count

Mumber of followers
Choose awalue | |:

add dynamic content Bl

Edit in adwanced mode

[86]

Chapter 3

8. Once you choose the Followers Count parameter, you create a condition
(Followers count is greater than or equal to 200), as shown in the following
screenshot:

N
Condition
Followers count is greater than or equal to ™" | | 200
Add dynamic content Bl
Edit in advanced mode Callapse condition

9. In the If Yes section of the preceding Condition, search for Gmail connection and
select Gmail - Send email, as shown in the following screenshot:

IF YES
E Choose an action
L2 grnail x
Connectors See more
E
Gmail Google
Tasks
Triggers [5) Actions (10 See more

Grmail - Reply to email (i)

E Gmail - Send email

Grrail - Delete email i)

ﬂ Gmail - Get email details O]

[871]

Seamless Integration of Azure Functions with Other Azure Services

10. It will ask you to log in if you haven't already. Provide your credentials and
authorize Azure Logic Apps to allow access to your Gmail account.

11. Once you authorize, you can frame your email with dynamic content with the
Twitter parameter, as shown in the following screenshot:

IF YES
E send email
*To ‘ praveen, FOCPmIE m e com |
) Mame = yith Followers count s« followers posted a tw
Subject
eet

Body ‘ Tweet text |
Add dynamic content [+]]

Aftachrents Mame ‘ Attachment name)

Attachiments Content ‘ Attachment content |
Attachrent content type |

Attachments Content- ‘
| Tpe

—

Showe advanced options

Connected to prawin2ki@gmail.cam, Change connection,

12. Once you are done, click on the Save button, as shown in the following
screenshot:

CAppsD

H save| 3 Discard

[881]

Chapter 3

Testing the Logic App functionality

1. Let's post a tweet on Twitter with the hashtag #AzureFunctions, as shown in
the following screenshot:

y Prawin Sreeram @FPrawinsSresram - now
‘a What is Serverless Computing? Exploring #AzureFunctions
What is Serverless Computing? Exploring Azure ...

There's a lot of confusing terms in the Cloud space. And
@ g that's not counting the term 'Cloud.' ;) laaS
(Infrastructure ...

2. After a minute or so, the Logic App should have been triggered. Let's navigate to

the Overview blade of the Logic App that we have created now and view Runs
history:

Pick ﬂ'.a

to open monitor wew dire.,

STATUS STARTTIME IDENTIFIER DURATION

3. Yay! It has triggered twice and I have received the emails. One of them is shown
in the following screenshot:

Sat 61042017 10:13 Fit
praw d 4

Prawin Sreerarn with 238 followers posted a turest

To pravesn

What 15 Servetless Computing? Exploting #4AzureFunctions https /it co/lwzITBPvE{L

[891]

Seamless Integration of Azure Functions with Other Azure Services

How it works...

You have created a new Logic App and have chosen the Twitter connector to monitor the
tweets posted with the hashtag #AzureFunctions each minute. If there are any tweets
with that hashtag, it checks whether the follower count ;is greater than or equal to 200. If the
follower count meets the condition, then a new action is created with a new connector
Gmail that is capable of sending an email with the dynamic content being framed using the
Twitter connector parameters.

See also

o The Integrating Logic Apps with Azure Functions recipe

Integrating Logic Apps with Azure Functions

In the previous recipe, you learned how to integrate different connectors using Logic Apps.
In this recipe, we will implement the same solution that we implemented in the previous
recipe by just moving the conditional logic that checks the follower count to Azure
Functions.

Getting ready

Before moving further we will perform the following steps:

1. Create a SendGrid account (if not created already), grab the SendGrid API key,
and create a new key in the Application settings of the function app.

2. Install Postman to test the GenericWebHook-C# trigger. You can download the
tool from https://www.getpostman.com/.

[90]

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/

Chapter 3

How to do it...

1. Create a new function by choosing the GenericWebHook-C# trigger and name it

ValidateTwitterFollowerCount.

2. Replace the default code with the following:

#r "Newtonsoft.Json"

#r "SendGrid"

using System;

using System.Net;

using Newtonsoft.Json;

using SendGrid.Helpers.Mail;

public static void Run (HttpRequestMessage req,
TraceWriter log,
out Mail message

)

{

log.Info ($"Webhook was triggered!");

string jsonContent = reqg.Content.ReadAsStringAsync () .Result;

dynamic data = JsonConvert.DeserializeObject<dynamic>

(jsonContent) ;

string strTweet = "";

if (data.followersCount >= 200)

{
strTweet = "Tweet Content" + data.tweettext;
message = new Mail();
message.Subject = $"{data.Name} with

{data.followersCount} followers has posted a tweet";
message.From = new Email ("donotreply@example.com");
message.AddContent (new Content ("text/html",strTweet));
Personalization personalization = new Personalization();
personalization.AddTo (new
Email ("to@gmail.com"));

message.AddPersonalization (personalization);

}

else

{
message = null;

}

}

3. Navigate to the Integrate tab and add a new output binding, SendGrid, by

clicking on the New Output button.

[91]

Seamless Integration of Azure Functions with Other Azure Services

4. Provide the following values in the SendGrid output (message) binding;:

SendGrid output (message) delete

Message parameter name & SendGrid AP Key 8

‘ message SendGridapikey

[Use function eturn value
From address €

To address @ From address

To address
Message Text &

Message subject € Message Text

Message subject

5. Test the function using Postman by choosing the parameters highlighted in the
following screenshot. In the next steps, after we integrate the Azure Function
ValidateTwitterFollowerCount, all the following input parameters, such as
followersCount, tweettext, and Name, will be posted by the Twitter
connector of the Logic App:

POST htps:/{azurefunctionscookbook.azurewebsites.net/api/ValidateTwitterFollowerCount?code=p9NOhTIHdxRI c.. Params Send ~

(1) I Body ® I
form-data s-www-form-urlencoded I * r’awI binary W |SON (application/json I

"followersCount™ : 22@,
"tweettext™:"#Azure Functions are amazing"”,
“Name" : "Praveen Sreeraml'

[0, R VTR

6. Create anew Logic App named
NotifywhenTweetedbyPopularUserUsingFunctions.

7. Start designing the app with the Blank Logic App template and choose the
Twitter connector and configure Search text, Frequency, and Interval.

[92]

Chapter 3

8. Click on the New step to add an action by choosing the Add an action button, as
shown in the following screenshot:

u When a new tweet iz posted

+ Mew step

[—]

_.L

Add an action

T

+dd a condition hMaore

9. In the Choose an action section, choose Azure Functions as a connector, as
shown in the following screenshot:

E Choose an action

u When a new tweet is posted

L

‘ SO Eearch all conmectars and actions

Connectars
HTTP

Ackions [258)

Service Bus

&>

501 Servel

—
Fundtions

See maore

OO A

Office 3685 Azure Blob Text
Cutlook Storage Analytics

SEE MOre

[93]

Seamless Integration of Azure Functions with Other Azure Services

10. Clicking on Azure Functions shows the following action. Click on Azure
Functions - Choose an Azure function:

N

Azure Functions

€ Search all actions

Triggers [Actions [1]

2| Azure Functions - Choose an Azure function

TELL US WHAT voOU NEED

@ Help us decide which connectors and triggers to add next with UserVoice

Cancel

11. Now you will see all the available function apps. Click on the
AzureFunctionCookbook function app and then select the Azure Functions -
ValidateTwitterFollowerCount function, as shown in the following screenshot:

Azure Functions

& Search all actions
Actions [
Azure Functions - RegisterUser

Azure Functions - SavelsonToSQLAzureDatabase)

Azure Functions - ValidateTwitterFollowerCount

Azure Functions - Create Mew Function (i)

TELL US WHAT ¥OU NEED

@ Information on creating Azure Function Apps can be found here

[94]

Chapter 3

12. In the next step, you need to frame the input that needs to be passed from the
Logic App to the GenericWebHook-C# function
ValidateTwitterFollowerCount, which we have developed. Let's frame input
JSON in the same way that we have created while testing the GenericWebHook-
C# function using Postman, as shown in the following screenshot (the only
difference is that the values such as followersCount, Name, and tweettext are
dynamic now):

£ usem

ValidateTwitterFollowerCount

Usgr name of the person‘who posted the ariginal tufl,

{ ariginal tweet user Description
“followersCount™: Followers count =« User description |
Request Body “hve etbest " Tweeet text = Criginal tweet user statuses count
‘ User status count
“Mame™" User name s - L
1 Statuses count
User status count
maaamic content [l .
User id
Showe advanced options Tuitter |d of the user

User mentions
List of users mentioned in the tweet

User name
+ Mew step Screen name of the user

13. Once you have reviewed all the parameters that the
ValidateTwitterFollowerCount function expects, click on the Save button to
save the changes.

14. You can wait for a few minutes or post a tweet with the hash tag that you have
configured in the Search text input field.

[95]

Seamless Integration of Azure Functions with Other Azure Services

There's more...

In the Azure Function ValidateTwitterFollowerCount, we have
hardcoded the threshold follower count of 200 in the code. It's a good
practice to store these values as configurable items by storing them in
Application settings.

If you don't see the intended dynamic parameter, click on the See more button, as shown in
the following screenshot:

O Search dynaric content

When a new tweet is posted SeE rmars

Body

Description
User description

See also

e The Sending an email notification to the end user dynamically recipe in Chapter 2,
Working with Notifications Using SendGrid and Twilio Services

[96]

Understanding the Integrated
Developer Experience of Visual
Studio Tools for Azure
Functions

In this chapter, we will cover the following :

¢ Creating the function app using Visual Studio 2017

¢ Debugging C# Azure Functions on a local staged environment using Visual
Studio 2017

¢ Connecting to the Azure Cloud storage from local Visual Studio environment
¢ Deploying the Azure Function app to Azure Cloud using Visual Studio

¢ Debugging live C# Azure Function hosted on the Microsoft Azure Cloud
environment using Visual Studio

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

Introduction

In all our previous chapters, we looked at how to create Azure Functions right from the
Azure Management portal. The following are a few of the features:

* You can quickly create a function just by selecting one of the built-in templates
provided by the Azure Function Runtime

¢ Developers need not worry about writing the plumbing code and understanding
how the frameworks work

e Make the configuration changes right within the UI using the standard editor

In spite of all the advantages mentioned, somehow, developers might not find it
comfortable as they might have become used to working with their favorite Integrated
Development Environments (IDEs) since a long time. So, the Microsoft team has come up
with some tools that help developers integrate them into the Visual Studio so that they can
leverage some of the critical IDE features that accelerate the development efforts. The
following are a few of them:

¢ You will have IntelliSense support
* You can debug the code line by line
¢ Quickly view the values of the variables while you are debugging the application

e Integration with version control systems such as Visual Studio Team Services
(VSTS)

Currently, the Visual Studio tools for the function supports debugging only for C# (at the
time of writing this). Microsoft would come up with all these cool features in the future for
other languages. If you would prefer to use Visual Studio Code to develop Azure Functions
for JavaScript (Node.js), you can have debugging support.

You will learn some of the preceding features in this chapter and see how to integrate code
with VSTS in chapter 10, Implement Continuous Integration and Deployment of Azure
Functions Using Visual Studio Team Services.

[98]

Chapter 4

Creating the function app using Visual
Studio 2017

In this recipe, you will learn how to create an Azure Function in your favorite IDE Visual
Studio 2017.

Getting ready

You need to download and install the following tools and software:

¢ Download Visual Studio 2017 Preview Version 15.3.0, Preview 2.0, or higher. You
can download it from https://www.visualstudio.com/vs/preview/.

¢ Choose Azure development in the Workloads section while installing, as shown
in the following screenshot, and click on the Install button.

Installing — Visual Studio Community 2017 Preview — 15.3.0 Preview 2.0

Workloads Individual components Language packs
Windows (3)
m M Universal Windows Platform development H] .MET desktop development
.. Create applications for the Universal Windows Platferm Build WPF, Windows Forms, and console applications using
PP PP g
with C#, VB, JavaScript, or optionally C++. C#, Visual Basic, and F=.

4 Desktop development with C++
I—.J Build classic Windows-based applications using the power
of the Visual C++ toolset, ATL, and optional features like...

Web & Cloud (7)

@ ASP.NET and web development = Azure development
Build web applications using ASP.NET, ASP.NET Core, Azure SDK, tools, and projects for developing cloud apps
HTML, JavaScript, and container development tools. and creating resources.

¢ Download Azure Function Tools for Visual Studio 2017 from https://
marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.

AzureFunctionToolsforVisualStudio2017.

[991]

https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

How to do it...

1. Open Visual Studio and choose File and then click on New Project. In the New
Project dialog box, in the Installed templates, under Visual C#, select Cloud and
then select the Azure Functions template:

New Project \L-‘

b Recent “ [.NET Framework 4.6.1 | Sort by: | Default - = Search (Ctrl+E) P~
4 |nstalled .)
nstate , Azure Functions Visual C# Type: Visual &
4 Visual C# ,:rz;r;flate to create an Azure Function
Azure Cloud Servi Visual C# :
Windows Classic Desktop O ure Lioud senice 1sua
Web @' ASP.NET Web Application (NET Framework) Visual C2
MET Core
ndard @ ASP.MET Core Web Application (MET Core) Visual C=
Cloud
@ ASP.MET Core Web Application (MET Framework) Visual C&
Test b
b Visual Basic Q Azure Resource Group Visual C#
S0L Server
b Azure Data Lake Q Service Fabric Application Visual C#
I Stream Analytics
b Other Project Types
-
Mot finding what you are leoking for?
Open Visual Studic Installer
Mame: FunctionApplnVisualStudio
Location: |e\users\cookbookadminSource\Repost Chapterd -| Browse...
Solution name: FunctienApplnVisualStudio Create directory for solution
["] Add to Source Control
Cance'

2. Provide the name of the function app. Click on the OK button to create the
function app after choosing a location:

Solution Explorer > o
RE- o @ s -
Search Solution Explorer (Ctrl+;) 4

] Solution 'FunctionApplnVisualStudio' (1 project)
Pl FunctionApplnVisualStudio
B @ Dependencies
£T hostjson
£T local.settings.json

[100]

Chapter 4

3. We have created the Azure Function successfully. Now let's add an HTTP trigger
function that accepts web requests and sends a response to the client.

4. Right click on the project, click on Add, and select New Item. In the Add New
Item window, choose Azure Function, as shown in the following screenshot:

4 |nstalled

4 Visual C# ltems
Code

Data

General

Web
ASP.MET Core
50L Server

- =

Storm ltems

Windows Forms

Add New ltem - FunctionApplnVisualStudio
T T —

Azure Function

Class

Class for U-50L

Interface

Code Analysis Rule Set

-
Visual C# ltems
Visual C2 tems
Visual CZ ltems
Visual CZ ltems

Visual C# ltems

E] CodeFile Visual C# ltems
B Online
i? DataSet Visual C# ltems
Ccn
| I Debugger Visualizer Visual C# [tems
I—j HTML Page Visual C# [tems
<.
rJS - . .
-J JavaScript File Visual C# ltems
c#
l_j OWIN Startup class Visual CZ ltems
b3
Runtime Text Template Visual C# ltems ™
Name: Il HtttpTriggerCSharpFromVs I |
L | |

Search (Ctrl+E)

Type: Visual C# ltems

Add an Azure Function to the project.

- |

p.

Cancel

[101]

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

5. In the New Azure Function dialog box, as shown in the following screenshot,
provide the required values and click on the Create button to create the new
HTTPTrigger function:

FuncticnMame

f GenericWebHook -
HTTPTriggerCSharpFromys|

£ Sithub\ebHook
f HttpTrigger

F HttpTriggerWithParameters

J QueueTrigger

F ServiceBusQueueTrigger
F ServiceBusTopicTrigger
F TimerTrigger

f Facelocator

f GitHubCommenter

F HttpGetCRUD

F HttpPostCRUD

F HttePutCRLND -

6. After you create a new function, a new class will be created, as shown in the
following screenshot:

fal Selution 'FunctionApplnVisualStudio’ {
4 FunctionAppInVisualStudio
P& Dependencies
IT hostjson
P HtttpTriggerCSharpFromVs.cs
IT local settings.json

We have now successfully created a new HTTP triggered function app using our favorite
IDE Visual Studio 2017.

MNew Azure Function - HtttpTriggerCSharpFromVs _

i

F BlobTrigger - AccessRights ;
7 EventHubTrigger Anonymous [~] :

[102]

Chapter 4

How it works...

Visual Studio tools for Azure Functions help developers use their favorite IDE, which they
have been using since ages. Using the Azure Function Tools, you can use the same set of
templates that the Azure Management portal provides in order to quickly create and
integrate with the cloud services without writing any (or minimal) plumbing code.

The other advantage of using Visual Studio tools for functions is that you don't need to
have a live Azure subscription. You can debug and test Azure Functions right on your local
development environment. Azure CLI and related utilities provide us with all the required
assistance to execute the Azure Functions.

There's more...

One of the most common problems that developers face while developing any application
on their local environment is that everything works fine on my local machine but not on the
production environment. Developers need not worry about this in the case of Azure
Functions. The Azure Functions Runtime provided by the Azure CLI tools is exactly the
same as the runtime available on Azure Cloud.

Note that you can always use and trigger an Azure service running on the
0 cloud even when you are developing the Azure Functions locally.

Debugging C# Azure Functions on a local
staged environment using Visual Studio
2017

Once the basic setup of creating the function is complete, the next step is to start working on
developing the application as per your needs. Developing code on a daily basis is not at all
a cake walk; developers will end up facing technical issues. They need tools to help them
identify the root cause of the problem and fix it to make sure they are delivering the
solution. These tools include debugging tools that help developers step into each line of the
code and view the values of the variable and objects and get a detailed view of the
exceptions.

[103]

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

In this recipe, you will learn how to configure and debug an Azure Function in a local
development environment within Visual Studio.

Getting ready

Download and install the following:

e Azure CLI (if you don't have these tools installed, Visual Studio will
automatically download them when you run your functions from Visual Studio.)

How to do it...

1. In our previous recipe, we created the HITPTrigger function using Visual
Studio. Let's build the application by clicking on Build and then clicking on
Build Solution.

2. Open the HTTPTriggerCSharpFromVs. cs file and create a breakpoint by
pressing the F9 key, as shown in the following screenshot:

lociscingsson__ [PoSTmmmmere—e— |

<*| FunctionApplnVisualStudio - *z FunctionApplInVisualStudio.HtttpTrigg
= using System.Threading.Tasks;

using Microsoft.Azure.Weblobs;

using Microsoft.Azure.Weblobs.Extensions.Http;

using Microsoft.Azure.Weblobs.Host;

—Inamespace FunctionAppInVisualstudio

10 {
11 = public static class HtttpTriggerCSharpFromvs
12 {
13 [FunctionName("HTTPTriggerCSharpFromvs™)]
14 = public static async Task<HttpResponseMessage> Run{[HttpTrigger(Authorizat
15 I
» 16 Llog.Info("C# HTTP trigger function processed a request.”);
18 /{ parse query parameter
19 string name = req.GetQueryNameValuePairs()
20 .FirstOrDefault(q => string.Compare(g.Key, “name”, true) == @)

21 alue;

3. Press the F5 key to start debugging the function. When you press F5 key for the
first time, Visual Studio prompts you to download Visual Studio CLI tools. These
tools are essential for executing the Azure Function in Visual Studio:

[104]

Chapter 4

ricrosoft Wisual Studio

The Azure Functions CLI tools are required to run this project, Would
you like to download and install them now?

Yes Mo

The Azure Function CLI is now renamed to Azure Function Core Tools.
You can learn more about them at nttps://www.npmijs.com/package/

azure-functions-core-tools.

4. Clicking on Yes in the preceding step would start downloading the CLI tools.
This would take a few minutes to download and install the CLI tools.

5. After the Azure Function CLI tools are installed successfully, a job host will be
created and started. It starts monitoring the requests on a specific port for all the
functions of our function app. The following is the screenshot that shows that the
job host has started monitoring the requests to the function app:

nd the following functions:
t.Functionz.HttpTrigge harpFromys

Job host =tarted
fapi/HttpTriggercsharpFromy's

[105]

https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

6. Let's try to access the function app by making a request to
http://localhost:7071 in one of your favorite browsers:

5 http://localhost 7071/ m 2 Your Azure Function App is... %

Microsoft Azure

Your Function App is
up and running

Azure Functions is an event-based serverless
compute experience to accelerate your
development.

7. Now, key in the complete URL of our HTTP trigger in the browser. It should look
like this:
http://localhost:7071/api/HttpTriggerCsharpFromVS?name=Praveen
Sreeram

8. As soon as we hit the Enter key in the location bar of your browser after typing
the correct URL of the Azure Function, the Visual Studio debugger hits the
debugging point (if you have one), as shown in the following screenshot:

HitpTrggercsharpfromys.cs + < [

local.settin o
[#] FunctionApplnVisualStudio vI “ FunctionAppInVisualStudio.Htttp TriggerCSharpFromys
4 using System.Threading.Tasks;
using Microsoft.Azure.WebJobs;
6 using Microsoft.Azure.WebJobs.Extensions.Http;
7 using Microsoft.Azure.WebJobs.Host;
8
9 Flnamespace FunctionAppInVisualStudio
18 {
11 El public static class HtttpTriggerCSharpFromvs
12 {
13 [FunctionName("HTTPTriggerCSharpFromvs™)]
14 =} public static async Task<HttpResponseMessage» Run([HttpTrigger(Authorizat
15 {
Q 16 [Log.Info("C# HTTP trigger function processed a request.”);|
17
18 // parse query parameter
19 string name = req.GetQueryNameValuePairs()
28 LFirstOrDefault(q => string.Compare(q.Key, "name”, true) == @)
21 WValue;

Autos

[106]

Chapter 4

9. You can also view the data of your variables, as shown in the following
screenshot:

public static async Task<HttpResponseMessage» Run([HttpT
1
log.Info("C# HTTP trigger function processed a reque

."..". = [- S TRT=YY naramatar
stringfname = req.GetQueryNameValuePairs()

.F rstDrIii‘ name| =, ~ "Praveen Sreeram” ﬂ-l ey, "nams
Nalugs

[Get reguest bhodw

10. Once you complete the debugging, you can click on the F5 key to complete the
execution process. Once the execution of the entire function is complete, you
would see the output response in the browser, as shown in the following

screenshot:
& C | @ localhost:707 1 /apiH ttpTriggerCsharpFromyaname =Praveen®205reeram
‘ I | |]] o I - n [__

This XML file does not appear to have any style mformation assooiated wath it The document tree 12 shown below.

<string xmlns="http://schemas.microsoft.com/2083/18/5erialization/

Hello Praveen Sreeramddstrings

[107]

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

11. The function execution log will be seen in the job host console, as shown in the
following screenshot:

Ch\Users\Cookbookadmin\AppData\Local\Azure. Functions.CIi\1.0.0-beta. 99\ fun... \;li-

=

Ll

=&
=

==
==

0 P E D He D
0 0 = = D AP 66 B i

= &=
=

iy
=
il

DS
= =
m

=

=

wafuluful

=
=
=

=
=
=

=
5

=
=

g Jenfu o B o fu B B Qe)
=

R R fuo o R R fo R B Foal o fu o B =
R R R o R R faa R L o)
R iR R R R R foa R f e fuo)

—_
N

. You can add more Azure Functions to the function app, if required. In the next
recipe, we will look at how to connect to Azure Cloud storage from the local
environment.

How it works...

The job host works as a server that listens to a specific port. If there are any requests to that
particular port, it automatically takes care of executing the requests and sends a response.

The job host console provides you with the following details:

o The status of the execution along with the request and response data
¢ The details about all the functions available in the function app

[108]

Chapter 4

There's more...

Using Visual Studio, you can directly create precompiled functions, which means when you
build your functions, it creates a . d11 file that can be referenced in other applications, as
you do for your regular classes. The following are two of the advantages of using
precompiled functions:

¢ Precompiled functions have better performance as they wouldn't be required to
compile on the fly

¢ You can convert your traditional classes into Azure Functions easily and refer
them in other applications seamlessly

Connecting to the Azure Cloud storage from
local Visual Studio environment

In both of the previous recipes, you learned how to create and execute Azure Functions in a
local environment. We have triggered the function from a local browser. However, in this
recipe, you will learn how to trigger an Azure Function in your local environment when an
event occurs in Azure. For example, when a new Blob is created in a storage account, you
can have your function triggered on your local machine. This helps the developers test their
applications upfront before they deploy them to the production environment.

Getting ready

1. Create a storage account and a container named cookbookfiles in Azure.
2. Install Microsoft Azure Storage Explorer from http://storageexplorer.com/.

[109]

http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

How to do it...

1. Open the FunctionAppInVisualStudio Azure Function app in Visual Studio and
add a new function named BlobTriggerCSharp, as shown in the following
screenshot:

MNew Azure Function - BlobTriggerCSharp \L-

FunctionMame
BlobTriggerCSharg

f BlobTrigger

7 EventHubTrigger

Connection
J GenericWebHook AzureWeblobsStorage
F GitHubWebHook Path
f HitpTrigger cookbookfiles|

F HttpTriggerWithParameters

f QueueTrigger

f ServiceBusQueueTrigger
F ServiceBusTopicTrigger
F TimerTrigger

f Facelocator

f GitHubCommenter

F HitpGetCRUD

F HttpPostCRUD

 HttnPutCRLID

e || o |

2. In the storage account connection, provide AzureWebJobsStorage as the name
of the connection string and also provide the name of the Blob container (in my
case, it is cookbookfiles) in the Path input field and click on the Create button
to create the new Blob trigger function.

[110]

Chapter 4

3. A new Blob trigger function gets created, as shown in the following screenshot:

| —
Solution Explorer ~

@E-|o-5a@| F -
Search Solution Explorer (Ctrl+;)
fad Selution 'FunctionApplnVisualStudio' (1 pr

4 FunctionApplnVisualStudio
e Dependencies

IT hostjson

b o# HtttpTriggerCSharpFromVS.cs
IT local.settings.json

4. If you remember the Building a backend Web API using HT'TP triggers recipe from
Chapter 1, Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings, the Azure Management portal allowed us to choose a new
or existing storage account. However, the preceding dialog box is not connected
to your Azure subscription. So, you need to navigate to the storage account and
copy the connection string by navigating to the Access Keys blade of the storage
account in the Azure Management portal, as shown in the following screenshot:

Storage account name cookbookpoc .
Default keys

MNAME KEY CONMNECTION STRING

key VREKwNxr3n20WavISElpSgIRgKhMX... . DefaultEndpointsProtocal=https:Ace... [. (&)

keey?2 AdlybxmldyKpkVdMuPA2 +Fp3ncaks... . DefaultEndpointsProtocol=https:Acc... . CQ

[111]

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

5. Once you have copied the connection string, paste it in the
local.settings. json file, which is in the root folder of the project. This file is
created when you create the function app. The 1local.settings. json file
should look something like what is shown in the following screenshot after you
add the connection string to the key named AzureWebJobsStorage:

[RS A e BlobTriggerCsharp.cs HtttpTriggerCSsharpFromVs.cs
Schema: <Moo Schema Selected>

ST

2 "IsEncrypted": false,

3 = "Values™: {

4 "AzureWeblobsstorage”: "DefaultEndpointsProtocol=htt

5 "AzureWeblobsDashboard™: ™"

6 T

7 b

6. Open the BlobTriggerCSharp.cs file and create a breakpoint, as shown in the
following screenshot:

local settingsjson Gl RS E RS Wl Hittp TriggerCSharpFromVS.cs
[#] FunctionApplnVisualStudio ~ ¥z FunctionAppInVisualStudio.BlobTriggerCSharp - @R
1 —lusing System.IO;
2 using Microsoft.Azure.Weblobs;
3 using Microsoft.Azure.Weblobs.Host;
5 —Inamespace FunctionAppInVisualStudio
6 {
7 = public static class BlobTriggerCSharp
8 1
9 [FuncticnName("BlobTriggerCSharp™)]
1@ = public static void Run([BlobTrigger(“cookbookfiles/{name}", Connection = "AzureWebJobsStorage “)]Stream myB
11 I
L] 12 log.Info($"C# Blob trigger function Processed blob\n Name:{name} \n Size: {myBlob.Length} Bytes");
13 }
14 b
15 }

[112]

Chapter 4

7. Now press the F5 key to start the job host, as shown in the following screenshot:

ChUsers\Cookbookadmin\AppData\Local\Azure.Functions.CIi 1.0.0-beta. 99\ fun... M

AM] Executing HTTP request: {
"regquestld': "6dd41e5d-2286-4805-8f14-—ce?Ba2c58ea?" .
"method": "GET".

apitts vt

Executed HTTP request: {
"regquestld': "6dd41e5d-2286-4805-8f14-—ce?Ba2c58ea?".
"method": "GET".
upitts v,
"authorizationLevel': “Anonymous'’

AM]1 Response details: {

"requestId': "6dd41e5d-2286-4805-8f14-ce?Ba2c58ea?" .,
AM1] "status™: ' '
AMT >

http://localhost:=?871 /api/HTTPTriggerCSha

onf[::1:5858
AM} Found the following functions:
3 AMJ Host.Functions.BlobTriggerCSharp
AM} Host_.Functions HITPTriggerCSharpFromUs
a3 AMp
6182817 8:43:84 AM) Jobh host started

8. Thave added a new Blob file using Azure Storage Explorer, as shown in the
following screenshot:

B cookbookfiles

- 4 o 4+ & ® B

Upload Download Qpen Mew Folder Copy URL Select all Copy

cookbookfiles

[113]

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

9. As soon as the Blob has been added to the specified container (in this case, it is
cookbookfiles), which is sitting in the cloud in a remote location, the job host
running in my local machine detects that a new Blob has been added and the
debugger hits the function, as shown in the following screenshot:

host.json local settings.json LN AR EL RIS Hittp TriggerCSharpFromVs.cs 7 X

[€#] FunctionApplnVisualStudio ~ % FunctionApplnVisualStudic.BlobTriggerCSharp
C:\Users\ Cookbookadmin' Source\Repos\Chapterd\FunctionApplnVisualStudio\FunctionApplnVisualStudio\Hittp TriggerCSharpFromVS.cs |
using Microsoft.Azure.WebJobs;

using Microsoft.Azure.Weblobs.Host;

-lnamespace FunctionAppInVisualstudio

= public static class BlobTriggerCSharp
1
[FunctiocnMame("BlobTriggerCSharp™)]
= public static void Run([EBlobTrigger("cookbookfiles/{name}", Connection = "AzureWebJobsStorage")]Stream mf

llog.In‘Fo(jS"C# Blob trigger function Processed blob\n Name:{name} \n Size: {myBlob.lLength} Bytes");|
¥

©

S TR S S T . Y STV N

[
et

How it works...

In this BlobTriggerCSharp class, the Run method has the WebJobs attributes that has the
connection string (in this case, it is AzureWebJobsStorage). This instructs the runtime to
refer to the Azure Storage connection string in the local settings configuration file with the
key named the AzureWebJobsStorage connection String. When the job host starts
running, it uses the connection string and keeps an eye on the storage accounts containers
that we have specified. Whenever a new Blob is added/updated, it automatically triggers
the Blob trigger in the current environment.

There's more...

When you create Azure Functions in the Azure Management portal, you would need to
create triggers and output bindings in the Integrate tab of each Azure Function. However,
you can just configure Web]Job attributes when you are creating the function from the
Visual Studio 2017 IDE.

You can learn more about WebJob attributes at https://docs.microsoft.
com/en—-us/azure/app-service-web/websites-dotnet-webjobs-sdk.

[114]

https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk

Chapter 4

See also

e The Creating the function app using Visual Studio 2017 recipe

Deploying the Azure Function app to Azure
Cloud using Visual Studio

So far the function app is just a regular application within Visual Studio. To deploy the
function app along with its functions, we need to either create the following new resources
or select existing ones to host the new function app:

¢ The resource group
e The App Service plan
e The Azure Function app

You can provide all these details directly from Visual Studio without opening the Azure
Management portal. You will learn how to do that in this recipe.

How to do it...

1. Right click on the project and then click on the Publish button to open the
Publish window.

2. In the Publish window, choose the Create New option and click on the Publish
button, as shown in the following screenshot:

FunctionApplnVisualStudio = > e aE local.settings json BlobTriggerCSharp.cs HittpTriggerCSharpFrom

Connected Services Publish

Publish your app to Azure or another host. Learn more

4

Folder

[Create New
() Select Existing Publish

[115]

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

3. In the Create App Service window, you can choose the existing resources or click
on the New button to choose the new Resource Group, the App Service Plan,
and the Storage Account, as shown in the following screenshot:

Create App Service B Microsoft account
Host vour web and mobile applications, REST APls, and more in Azure sprawin_Zk@hotrail.com

Services Functionfppintisualstudio

Subscription

Developer Program Benefit v

Resource Group

cookbookPOC v Iew,.,

App Service Plan
SouthCentraldEPlan (1, South Central US) hd Mew...

Storage Account

cookbookpoc (southindia) ¥ Mewy...

Clicking the Create button will create the following Azure resources

App Zerdice - Functionfppinyisual Studio

If you have removed your spending limit ar wou are using Pay as You Go, there may be monetary impact if wou provision additional resources,

[gese | [Cemer]

rd

4. In most of the cases, you would like to go with Consumption plan for hosting the
Azure Functions unless you have a strong reason and would like to utilize one of
your existing App Services. To choose the Consumption plan, you need to click
on the New button that is available for the App Service plan shown in the
preceding screenshot. Clicking on the New button will open another popup,
where you can choose the Consumption plan. As shown in the following
screenshot, select Consumption in the Size drop-down and click on the OK
button:

[116]

Chapter 4

App Service Plan

Location

Size

Configure App Service Plan

An App Service plan is the container for your app. The App Service plan
settings will determine the location, features, cost and compute...

FunctionAppinVisual5tudic2017Plan

South Central US b

: Consumption

i

Consumption App Service Plans are only available for Function Apps

| OK | ‘ Cancel ‘

5. After reviewing all the information, click on the Create button of the Create App
Service window. As soon as you click on the Create button, it starts deploying
the services to Azure, as shown in the following screenshot:

Deploying: Step 0 of 3

[117]

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

6. If everything goes fine, you can view the new function app created in the Azure
Management portal, as shown in the following screenshot:

<> Function Apps

NAME v SUBSCRIPTION ID RESOURCE GROUP LOCATION
AzureFunctionCookBook Developer Program Benefit AzureFunctionCookBook southcentralus
cockbookPOC Developer Program Benefit cookbookPOC southindia
FunctionAppinVisualStudio Developer Program Benefit cookbookPOC southcentralus

7. Hold on! Our job in Visual Studio is not yet done. We have just created the
required services in Azure right from Visual Studio IDE. Our next job is to
publish the code from the local workstation to Azure Cloud. As soon as the
deployment is complete, you will be taken to the web deploy step, as shown in
the following screenshot. Click on the Publish button to start the process of
publishing the code to your Azure Function app:

Publish

Publish your app to Azure or another host, Learn more

<0 AzureFunctionsProfile ¥

=

Create new profile

Summary

Site URL ewebsites.net []] Rename profile...
Configuraticn Debug Delete profile
Username LR = S mStudio2017

password TEHAEREERS

[118]

Chapter 4

8. After a few seconds, you would see something similar in the Output window of
your Visual Studio:

Qutput

Showr output frorn: | Build - | | |§ a

O R T T e e P e P e “om—r s P i
Adding file (Function&ppinVisualStudic\BlebTriggerCSharpirun.csx).

Adding file (FunctionAppinVisualStudio\BlebTriggerCSharpisample.dat).

Updating file (FunctionAppinVisualStudio\host.json).

Adding file (FunctionAppinVisualStudio\HttpTriggerCSharpFromVs function.json).
Adding file (Function&ppinVisualStudio\HttpTriggerCSharpFromVSiproject.jsen).
Adding file (FunctionAppinVisualStudio\HttpTriggerCSharpFromVS\project.lock.json).
Adding file (FunctionAppinVisualStudio\HttpTriggerCSharpFromvVs\readme.md).

Adding file (FunctionAppinVisualStudio\HttpTriggerCSharpFromVsyrun.csx).

Adding file (Functlom'-\ppln\-’lsualStudlD\Ht‘tpTr‘lggerCSharpFr‘om\a’S\sample dat).
i i html)

Publish Succeeded.
Web App was published successfully http://functicnappinvisualstudio.azurewebsites.net

Build: 1 succeeded or up-to-date, @ failed, @ skipped ==========
Publish: 1 succeeded, @ failed, 8 skipped ==========

-4

9. That's it. We have completed the deployment of your function app and its
functions to Azure right from your favorite development IDE Visual Studio. You
can review the function deployment in the Azure Management portal. Both
Azure Functions got created successfully, as shown in the following screenshot:

w ¢ » FunctionAppinVisualStudio &

w == Functions +

b f BlobTriggerCSharp

» f HttpTriggerCSharpFromVs

-— o)
w =— Proxies (preview) +

There's more...

Azure Functions that are created from Visual Studio 2017 are precompiled, which means
you deploy the .d11 files from Visual Studio 2017 to Azure. So, you cannot edit the
functions' code in Azure after you deploy. However, you can make changes to the
configurations, such as changing the Azure Storage connection string, the container path,
and so on. We will look at how to do that in the next recipe.

[119]

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

See also

e The Debugging live C# Azure Function hosted on the Microsoft Azure Cloud
environment using Visual Studio recipe

Debugging live C# Azure Function hosted on
the Microsoft Azure Cloud environment
using Visual Studio

In one of the previous recipes, in the Connecting to the Azure Cloud storage from local Visual
Studio environment recipe, you learned how to connect the cloud storage account from the
local code. In this recipe, you will learn how to debug the live code running in the Azure
Cloud environment. We will be performing the following steps in the BlobTriggerCSharp
function of the FunctionAppinVisualStudio function app:

¢ Change the path of the container in the Azure Management portal to the new
container

Open the function app in Visual Studio 2017

Attach the debugger from within Visual Studio 2017 to the required Azure
Function

Create a Blob to the new storage container

Debug the application after the breakpoints are hit

Getting ready

Create a container named cookbookfiles—1live in the storage account. We will be
uploading a Blob to this container.

[120]

Chapter 4

How to do it...

1. Navigate to the BlobTriggerCsharp function in the Azure Management portal
and change the path of the path variable, as shown in the following screenshot:

"FunctionAppinyvisualstudio2dr ¥ flJﬂCtiOﬂ.jSOﬂ

% Design Team
"bindings™: [
Furnction &pps
"type": "blobTrigger”,

oy T D RS n

» Functiondppinyisualstu, i 2

"path": "coekboekfiles-live/{name}",

o

[Eo RN BT I A FTR SR
=5

b *= Functions = ¥
* "name": “myElob™
BlobTrigaerCshar ¥
I §i ag B I w1,
¥ Integrate 11 "dis‘?blet.i": false,] . .]
12 MsecriptFile™: ", WwbindFunctionfppInvisualStudio.dll™,
Manage 13 “entryPoint™: “FunctionAppInvisualstudic.ElebTriggercsharp. Run™
14 |4
Q, Monitar

w» [HTTFTriggerCSharpFramis

2. Open the function app in Visual Studio 2017. Open Server Explorer and navigate
to your Azure Function, in this case, FunctionAppinVisualStudio2017, as shown
in the following screenshot:

Server Explorer
¢ sk
F u | _ N H n [W} 1
4 I.-I- |
. |
E ImIE e =

.,-J A_.llj.—rq.-'__
4 (%) AzureFunctionsCockBook

[% L5 A = N wlal OOk B o

% FunchionAppinVisualStudie2017

" .h. P e S LY RN e]

[121]

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

3. Right-click on the function and click on Attach Debugger, as shown in the
following screenshot:

erver Explorer

¢ el

4 Azure (e el eschiie
4 @ Appilaa
b (W) =

B (W o m—
b (N | =S
4 (99 AzureFunctionsCookBook
I < > AzureFunctionsCockBook

W

b m ¢ Refresh

b e &1 View in Browser
] = L} View Settings

b e

bR b Attach Debugger
bo& . e eW Streaming Logs
[- Stop

4. As soon as the Attach Debugger is clicked, Visual Studio will take a few
moments to enable remote debugging, as shown in the following screenshot:

Enabling remote debugging setting...

5. Once the remote debugging is enabled, the function app URL will be opened in
the browser, as shown in the following screenshot, indicating that our function
app is running:

[122]

Chapter 4

(=] [@ functionappinvisualstuss ¥ .azurewebsites.net

Microsoft Azure

Your Function App is

up and running
da

Azure Functions is an event-based serverless
compute expenience to accelerate your
development.

Learn more @

6. Navigate to Storage Explorer and upload a new file (in this case, I uploaded

EmployeeInfo.json) to the cookbookfiles-1ive container, as shown in the
following screenshot:

ft Azure
)

UrCes

CCESS

nd Attached)

rage Sccounts
{Development)
(SAS-Attached Services)

& Blob Containers
& $logs
B azure-webjobs-hosts
& cookbookfiles
=
B dbweb

imane

azurefunctionscookbook (External)

s T L o + ¢ e
Upload Download Open Mew Folder Copy URL Zelect all

[123]

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

7. After a few moments, the debug breakpoint will be hit, shown as follows, where
you can view the filename that has been uploaded.

B T
9 ‘ [FuncticonName("BlobTriggerCSharp™}]
1@ Bl public static wvoid Run([BlobTrigger(“cookbookfiles/{name}", Connection = "AzureWebJobsStorage")]Stream m
11 s
12 { log.Info($"C# Blob trigger function Processed blob\n Name:{name} ‘n Size: {myBlob.LengthiBy‘tes“);
13 3

% -4 k

tos

ame Value

@ log {Microsoft.Azure. WeblJobs.Script.Intercepting TraceWriter}

Ihdiceosoft Ao Host.Blobs.WatchableReadStream}
name "Employeelnfo.json”

See also

e The Connecting to the Azure Cloud storage from local Visual Studio environment recipe

[124]

Exploring Testing Tools for the
Validation of Azure Functions

In this chapter, we will explore different ways of testing the Azure Functions in more detail
with the following recipes:

e Testing HTTP functions using the following techniques:
e Postman

¢ The Azure Management portal
e Test Queues and Blobs using Storage Explorer

Testing an Azure Function on a staged environment using deployment slots

Load testing Azure Functions using Visual Studio Team Services (VSTS)

Creating and testing Azure Function locally using Azure CLI tools

Testing and validating Azure Function responsiveness using Application Insights

Introduction

In all our previous chapters, you learned how to develop Azure Function and where they
are useful and looked at validating the functionality of those functions.

Exploring Testing Tools for the Validation of Azure Functions

In this chapter, we will start looking at ways of testing different Azure Functions. For
example, running tests of HTTP trigger functions using Postman, usage of Microsoft
Storage Explorer to test Azure Blob triggers, Queue triggers, and other storage-service-
related triggers. You will also learn how to perform a simple load test on an HTTP trigger to
understand how the serverless architecture works on provisioning the instances in the
backend without developers worrying about the scaling settings on different factors. Azure
Function runtime will automatically take care of scaling the instances.

You will also learn how to set up a test that checks the availability of our functions by
continuously pinging the application endpoints on a predefined frequency from multiple
locations.

Testing Azure Functions

Azure Function runtime allows us to create and integrate with many Azure services. At the
time of writing this, there are more than 20 types of Azure Functions you can create. You
also need to understand how to test these functions. In this recipe, you will learn how to test
the most common Azure Functions, listed as follows:

e Testing HTTP triggers using Postman
¢ Testing the Blob trigger using Microsoft Storage Explorer
e Testing the Queue trigger using the Azure Management portal

Getting ready

Install the following tools if you haven't installed them yet:

e Postman: You can download it from https://www.getpostman.com/

e Microsoft Azure Storage Explorer: You can download it from http://
storageexplorer.com/

You can use Storage Explorer to connect to the storage accounts and view all
the data available different storage services, such as Blobs, Queues, Tables,
and Files. You can also create, update, and delete them right from the Storage
Explorer.

[126]

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/

Chapter 5

How to do it...

In this section, we will create three Azure Function using the default templates available in
the Azure Management portal and test them in different tools.

Testing HTTP triggers using Postman

1. Create an HTTP trigger function that accepts the First name and Last name
parameters and sends them in the response. Once it is created, make sure you set
Authorization Level as Anonymous.

2. Replace the default code with the following. Note that for the sake of simplicity, I
have removed the validations. In the real-time applications, you need to validate

each and every input parameter:

using System.Net;
public static string Run (HttpRequestMessage req, TraceWriter
log)

{
log.Info ("C# HTTP trigger function processed a request.");

string Firstname =
req.GetQueryNameValuePairs () .FirstOrDefault (g =>
string.Compare (q.Key, "Firstname", true) == 0) .Value;

string Lastname =
req.GetQueryNameValuePairs () .FirstOrDefault (g =>
string.Compare (g.Key, "Lastname", true) == 0).Value;
return "Hello " + Firstname + " " + Lastname;

}

3. Open the Postman tool and complete the following;:
1. The first step is to choose the type of HTTP method using which you
would like to make the HTTP request. As our function accepts most of
the methods by default, choose the GET method, shown as follows:

[127]

Exploring Testing Tools for the Validation of Azure Functions

2. The next step is to provide the URL of the HTTP trigger. Please note
that you would need to replace <HttpTriggerTestUsingPostman>
with your actual HttpTrigger function name shown as follows:

) No Environment
https://explorefuncap

GET https://explorefuncapp.azurewebsites.net/HtpTriggerTestUsingPostman? Params Send b

Firstname=Praveen&Lastname=Sresram

Headers

" ol o

3. Click on the Send button to make the request. If you have provided all
the details expected by the API, then you would see a Status code =200
along with the response.

Testing Blob trigger using the Microsoft Storage
Explorer

1. Create a new Blob trigger by providing a storage account and a container where
you store the Blob, shown as follows:

Name your function
ElobTriggerCiharp-TestusingStorageExplarer

Azure Blob Storage trigger (myBlob)

Path Storage account connection 8
samples-waorkitems/fname} azurefunctionscookbook_STORAGE v nEw

2. Let's connect to the storage account that we will be using in this recipe. Open
Microsoft Azure Storage Explorer and click on the button that is highlighted in
the following screenshot to connect to Azure Storage:

[128]

Chapter 5

2 Microsoft Azure Storage Explorer
Edit Help

Microsoft Azure

7]z & ©

Collapse All
= Cuick Access

4 @ (Local and Attached)
b B Storage Accounts

3. You will be prompted to enter a storage connection string, shared access
signature (SAS), or account key. For this recipe, let's use the storage connection
string. Navigate to Storage Account and copy the connection string in the Access

Keys blade and paste it in the Connect to Azure Storage popup, shown as
follows:

Connect to Azure Storage
Enter a connection string, Shared Access Signature (343) URI, or an account key,

DefaultEndpointsProtocol=https;AccountMarme=azurefunctionscookbookAccountiey=2m| Dt KCDZD +:25(

Mest Cancel

4. Clicking on the Next button in the preceding screenshot will take you to the
Connection Summary window, which displays the account name and other
related details for the confirmation. Click on the Connect button to get connected
to the chosen Azure Storage account.

[129]

Exploring Testing Tools for the Validation of Azure Functions

5. As shown in the following screenshot, you are now connected to the Azure
Storage account, where you can manage all your Azure Storage services:

Collapse All
¢ Quick fccess
4 g9 (Local and Attached)
4 H Storage Accounts
b B Developrment)
b E (SAS-Attached Services)

b~ File Shares
b [0 Queues
b B Tables

6. Now let's create a storage container named samples-workitems. Right-click on
the Blob Containers folder and click on Create Blob Container to create a new
Blob container named samples-workitems. Once the container is created, click
on the Upload files button, as shown in the following screenshot:

B samples-workiterns

|

Uplaad Mew Falder

B Upload Files..
Upload Folder.., -arkiterns

7. In the Upload Files window, choose a file that you would like to upload and click
on the Upload window.

8. Immediately navigate to the Azure Function code editor and look at the Logs

window, as shown in the following screenshot. The log shows the Azure
Function getting triggered successfully:

[130]

Chapter 5

Logs

wub—lsllz:js:bj HO
2817-86- 18T12:39:53 No
2017-86- 18T12:48:53 No

L R B T W~ s e T E R [a1

New Trace 1n Tne past < MIngs).
new trace in the past 5 min(s).
new trace in the past & min(s).
:uunm v T oadr C A Fodd o or £k il

17-@6- 18T12:41:48 . 676
Mame: EmployeeInfao. jsan
Size: 856 Bytes

17-@6- 18T12:41:408. 676

t# Blob trigger function Processed blob

s

Function completed (Success, Id=1lefdSeas-325c-dE5e-b&dd- 29E85TED3734, Duration=2ms)

Testing Queue trigger using the Azure Management

portal

1. Create a new Queue trigger named QueueTriggerTestusingPortal, as shown
in the following screenshot. Note the Queue name myqueue-items. We need to
create a Queue service with the same name later using the Azure Management

portal:

Queue trigger

New Function

Lang
c#

Name:

QueueTriggerTestusingPortal

Azure Queue Storage trigger

Queue name &

myqueue-items

int shio

Exploring Testing Tools for the Validation of Azure Functions

2. Navigate to the storage account's Overview blade and click on Queues, as shown
in the following screenshot:

azurefunctionscookbooks

D Search (Ct pen in Explorer =9 Move I Delete storage account

Overview
Activity log
Access control (LAM) Queues
Scaleapps depending on traffic

Tags

% Diagnose and solve problems

CJ Refresh M Delete queues

Essentials ~

Stomge account
azurefunctionscookbook

4. Provide a Queue name as myqueue-items in the Add queue popup, as shown in

the following screenshot, which we used while creating the Queue trigger. Click
on OK to create the Queue service:

Add gueue

* Queue name

myqueue-items|

[132]

Chapter 5

5. Once the Queue service is created, we need to create a Queue message. In the
Azure Management portal, click on the Queue service myqueue-items to
navigate to the Messages blade. Click on the Add message button, as shown in
the following screenshot, provide a Queue message text, and click on OK to
create the Queue message:

f_] Refresh + Add message M Dequeue message X Clear queue

Add message to gueue

* Message text
This iz a Queue Message created for testing Queuesl

* Expires in: %

7 Drays L

v | Encode the message body in Basesd @

o | oo

6. Immediately navigate to the Queue trigger QueueTriggerTestusingPortal and
view the Logs blade to understand how the Queue function got triggered, as
shown in the following screenshot:

Logs

ZA17-86-18T13:52:58 Mo new trace in the past 2 mings).

2A17-96-18T12:54:5@ Mo new trace in the past 18 min(s).

ZA17-AE-1ST13:5C:0A HO NEW trace in the past 11 min{s}.

A 17-B6-18T13:56:44.592 Function started (Id=dabdzoee-cedz-4334-3775-Sheslelbazaz)

FA17-B6R- 18T153:56:44.552 C# Queue trigger function processed: This is a Queue Message created for testing Queues
SB17-BE-18T13:56:44,5632 Function completed (success, Td=dabqzsce-ceqz-4334-5773-cheslclbazaz, ourstion=ams)

[133]

Exploring Testing Tools for the Validation of Azure Functions

There's more...

For all your HTTP triggers, if you would like to allow your API consumers only the POST
method, then you can restrict it by choosing Selected methods and choosing only POST in
Selected HTTP methods , as shown in the following screenshot:

HTTP trigger (req) delete

HITP methods ﬁ
Selected methods

Fequest parameter name &

req

Authorization level 8

Mode &

Standard

Foute tem plate @

Route ternplate

selected HTTP methocls 4

ARORYmOUs GET | PosT DELETE
HEAD] PUT
OFTIONS TRACE

“ taneel

Testing an Azure Function on a staged
environment using deployment slots

In general, every application would need preproduction environments such as staging,
beta, and so on for reviewing the functionalities before publishing them for the end users.

Though the preproduction environments are great and help multiple stakeholders validate
the application functionality against the business requirements, there are some pain points
in managing and maintaining them. The following are a few of them:

e We would need to create a separate environment for setting them up

¢ Once everything is reviewed in preproduction and IT Ops team gets a go-ahead,
there would be a bit of downtime in the production environment while deploying
the code base of the new functionalities

All the preceding limitations can be covered in Azure Functions using a feature called slots
(these are called deployment slots in App Service environments). Using slots, you can set
up a preproduction environment where you can review all the new functionalities and
promote them (by swapping, which we will discuss in a moment) to the production
environment seamlessly whenever you need.

[134]

Chapter 5

How to do it...

1. Create a new function app named MyProductionApp.

2. Create a new HTTP trigger and name it MyProd-HttpTriggerl. Please replace
the last line with the following:

return name == null ?

reqg.CreateResponse (HttpStatusCode.BadRequest, "Please pass a

name on the query string or in the request body")
reqg.CreateResponse (HttpStatusCode.OK, "Welcome to MyProd-

HttpTriggerl of Production App " + name);

3. Create another new HTTP trigger and name it MyProd-HttpTrigger2. Use the
same code that you used for MyProd-HttpTriggerl. Just replace the last line
with the following.

return name == null ?

req.CreateResponse (HttpStatusCode.BadRequest, "Please pass a

name on the query string or in the request body")
req.CreateResponse (HttpStatusCode.OK, "Welcome to MyProd-

HttpTrigger2 of Production App " + name);

4. Assume that both the functions of the function app are live on your production
environment with the URL
https://<<functionappname.azurewebsites.net>>

5. Now, the customer has requested us to make some changes to both functions.

Instead of directly making the changes to the functions of your production
function app, you might need to create a slot.

[135]

Exploring Testing Tools for the Validation of Azure Functions

6. Hold on! Before you can create a slot, you first need to enable the feature by
navigating to the Function app settings under the General Settings of the
Platform features tab of the function app, Once you click on the Function app
settings, a new tab will be opened where you can enable the Slots(preview) as
shown in the following screenshot:

Owerview Platform features Function app settings | %

Daily Usage Quota [GB-Sec] &

Enterwalue in GE-sec

Application settings
tanage application settings

Runtime version

Runtime wersion: 1.0.11090.0 (1)
Proxies [preview)

Enable &zure Functions Proxies (previend)

off

Function app edit mode
Change the edit mode of wour function app

ReadAnfrite

Slots [preview]

Enable deployrment slots (Breview), This is a one-tirne opt-in an the Function app that cannot be disabled and will reset any pre-existing
secrets, After the update, $he secrets may be copied frorm under the 'Manage’ node for each function.

off

7. Click on the ON button available in the Slots (preview) section highlighted in the
preceding screenshot. As soon as you turn it on, the slots section will be hidden
as it is a one-time setting. Once it's enabled, you cannot disable it.

8. OK, let's create a new slot named My St agedApp with all the functions that we
have in our function app named MyProductionApp.

[136]

Chapter 5

9. Click on the +icon available near the Slots (preview) section, as shown in the
following screenshot:

w { » MyProductionApp Fa
w == Functions L .
w = Proxies (preview) -+
w = Slots (preview) o

10. It prompts you to enter a name for the new slot. Provide a meaningful name
something such as Staging, as shown in the following screenshot:

Create a new deployment slot

Deployment slots let you deploy different versions of your
between slots.

Name &

Stagi "g| b4

11. Once you click on Create, a new slot will be created, as shown in the following
screenshot:

w > MyProductionApp o »
p == Functions -+
w == Proxies (preview] =+
w == Slots (preview) +

¢ » Staging =
w == Functions L o
w = Proxies (preview) =+

[137]

Exploring Testing Tools for the Validation of Azure Functions

12.

13.

14.

The URL for the slot will be
https://<<functionappname>>-<<Slotname>>.azurewebsites.net>>.
Each slot within a function app would have a different URL.

To make a staged environment complete, you need to copy all the Azure
Functions from the production environment (in this case, the MyProductionApp
app) to the new staged slot named staging. Create two HTTP triggers and copy
both the functions' code (MyProd-HttpTriggerl and MyProd-HttpTrigger?2)
from MyProductionApp to the new Staging slot. Basically, you need to copy all
the functions to the new slot manually.

Replace the production app instances to staging app in the last line of both the
functions in the Staging slot. This is useful for testing the output of the swap
operation.

Note that in all the slots that you create as a preproduction app, you need to
make sure that you have the same Function names that you have in your
production environment.

O "MyProductionApp" 52 Qverview Sett

Developer Program Benefit oo, w’ Swap

*= Function Apps

Status Suf

lw ¢ » MyProductionApp

Running De|

w i= Functions su8

» f MyProd-HttpTriggerl e
» f MyProd-HttpTrigger2

v = Proxies (preview) Configured featur

w == Slots (preview)

Quick links to your features will sho

you've configured them from the "P|

Q

¢ 7 Staging

above,

w = Functions -+

[138]

Chapter 5

15. Click on the Swap button available in the Deployment slots blade, as shown in
the following screenshot:

S TN T AL B I | AR V. -

% Deployment slots B >

lmj myprodu

NAME 5TATUS APP SERVICE PLAN

Click on the 'Swap' command above to start the swap operation.

16. In the Swap blade, you need to choose the following:
e Swap Type: Choose the Swap option.
e Source: Choose the slot that you would like to move to production. In
this case, Staging in general, you can even swap across non-production
slots.

[139]

Exploring Testing Tools for the Validation of Azure Functions

¢ Destination: Choose the production option, as shown in the following
screenshot:

Swap [

Choose which slots to swap

Swap type @

Swap o w
Source
| Staging e v |
Destination e
| production W |

Preview Changes

0 warnings,1 other messages

"o 4

17. Once you review the settings, click on the OK button of the preceding step. It will
take a few moments to swap the functions and a progress bar will appear, as
shown in the following screenshot:

“** Swapping web app slots...

[140]

Chapter 5

18. After a minute or two, the staging and production slots get swapped. Let's review
the run. csx script files of the production:

O "MyProductionApp’ x run.csx » Run <f> Get function URL

Developer Program Benefit 1 using System.Net;
2
= Function Apps 3 public static async Task<HttpResponseMessage> Run(HttpRequestMessage req, TraceWriter log)
4
<> MyProductionfpp ~ » 5 log.Info("C# HTTP trigger function processed a request.”);
v = Functions + 7 // parse query parameter
- 8 string name = req.GetQueryNameValuePairs()
- f MyProd-HitpTrigger]] .FirstOrDefault(q =» string.Compare(q.Key, "name", true) == 8)
10 Value;
1
Integrate
¥ 9 12 // Get request body
£ Manage 13 dynamic data = await req.Content.ReadAsAsync<object>();
Q, Monitor // Set name te query string or body data

name = name ?? data?.name;
» F MyProd-HttpTrigger2 L

18 return name == null
w I Proxies (preview) + 19 ? req.CreateResponse(HttpStatusCode.BadRequest, "Please passfa name on the query string or in the request bod
- 28 : req.CreateResponse(HttpStatusCode.0K, "Hello " + name + ".JlWelcome to MyProd-HttpTriggerl of Staging App");|
b E= Slots (preview) + 2}

19. If you don't see any changes, click on the refresh button of the function app, as
shown in the following screenshot:

lw ¢ » MyProductionApp E»

w == Functions
» f MyProd-HttpTriggerl

» f MyProd-HttpTrigger2

w =— Proxies (preview) +

p == Slots (preview) +

[141]

Exploring Testing Tools for the Validation of Azure Functions

20. Be cautious that the Application settings and Database Connection Strings are
marked as Slot Setting (slot-specific). Otherwise, Application settings and
Database Connection Strings will also get swapped, which could cause
unexpected behavior. You can mark any of these settings from Platform features,
as shown in the following figure:

Overview Settings

I Flatform features I

O Search features

GENERAL SETTINGS NETWORKING
= Application settings
1" Properties SSL

21. Clicking on the Application settings will take you to the following blade, where
you can mark any setting as a Slot setting:

=== Application settings

BN myproductionapp

H save Discard

Debugging

Remote debugging On

Remote Visual Studic version | 2012 | 2013 | 2015 | 2017 |

App settings
AzureWeblobsDashboard DefaultEndpointsProtocol=... Slot setting
AzureWeblobsStorage DefaultEndpointsProtocol=... Slot setting
FUNCTIOMS_EXTENSION_VE... ~1 Slot setting
WEBSITE_CONTENTAZUREFI.. DefaultEndpointsProtocol=... Slot setting
WEBSITE_CONTENTSHARE myproductionappaa®9 Slot setting
WEBSITE_MODE_DEFAULT V.. 6.5.0 S[Iit setting

[142]

Chapter 5

All the functions taken in the recipe are HTTP triggers; note that you can
have any kind of triggers in the function app. The deployment slots are
not limited to HTTP triggers.

You can have multiple slots for each of your function apps. The following
are few of the examples:

e Alpha
* Beta
e Staging

You need to have all the Azure Functions in each of the slots that you would like to swap
with your production function app:

e Slots are specific to the function app but not to the individual function.

¢ Once you enable the slots features, all the keys will be regenerated, including the
master. Be cautious if you have already shared the keys of the functions with
third parties. If you have already shared them and enabled the slots, all the
existing integrations with the old keys wouldn't work.

In general, if you are using App Services and would like to create deployment slots, you
need to have your App Service plan in either one of the Standard or Premium tiers.
However, you can create slots for the function app even if it is in Consumption (or
dynamic) plans.

There's more

If you try to create a slot without enabling the feature, you will see something similar to
what is shown in the following screenshot:

Create a new deployment slot

Deployment slots let you deploy different versions of your function app to different URLs.
between slots.

Azure functions slots (preview) is currently disabled. To enable, visit function app settings.

[143]

Exploring Testing Tools for the Validation of Azure Functions

Load testing Azure Functions using VSTS

Every application needs to perform well in terms of performance. It's everyone's
responsibility within the team that the application is performing well. In this recipe, you
will learn how to create a load on the Azure Functions using the load test tool provided by
VSTS. This recipe will also help you understand how the auto-scaling of instances works in
the serverless environment without the developers or architect worrying about the
instances that are responsible for serving the requests.

Getting ready

Create a VSTS account at https://www.visualstudio.com/. We will be using the load test
tool of VSTS to create URL-based load testing.

How to do it...

1. Create a new HTTP trigger named LoadTestHttpTrigger with Authorization
Level set to Anonymous.
2. Replace the default code with the following in run. csx:

using System.Net;
public static async Task<HttpResponseMessage>
Run (HttpRequestMessage req, TraceWriter log)

{
System.Threading.Thread.Sleep (2000) ;
return req.CreateResponse (HttpStatusCode.OK, "Hello ");

}

3. The preceding code is self-explainable. In order to make the load test interesting,
let's simulate some processing load by adding a wait time of two seconds using
System.Threading.Thread.Sleep (2000) ;.

4. Copy the function URL by clicking on the </> Get function URL link available on
the right-hand side of the run. csx code editor, as shown in the following
screenshot:

<f> Get function URL

[144]

https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/

Chapter 5

5. Navigate to Load test tab of the VSTS account.

6. Click on New link and select URL based test, as shown in the following

screenshot:

+ New~ (@)

4+ Visual Studio test jtot
4 HTTP Archive based test*

4+ URL based test

+ Apache JMeter test

7. In the Web Scenarios tab, provide a meaningful name for the load test, as shown
in the following screenshot:

Load test*: LoadTestFunctionAppl

8. Paste the HTTP trigger URL that you have copied in step 4 into the URL input
field, as shown in the following screenshot:

HTTP method URL
GET v https://myproductionapp.azurewebsites.net/api/LoadTestHttpTrigger
4 Headers
+ Add header

* QueryString Parameters

[145]

Exploring Testing Tools for the Validation of Azure Functions

9. Now, click on the Save button to save the load test:

Load test*: LoadTestFunctionApp #

Web Scenarios Settings

H Save i Import \HAR file

10. The next step is to provide details about the load that we would like to create on
the Azure Function. As shown in the following screenshot, click on Settings and
provide the details about the load test that you would like depending on your
requirements:

Load test*: LoadTestFunctionApp | Runs

Web Scenarios
4 Import HAR file

Run duration (minutes) 20

Load pattern Step ~
Max v-users 1000

Start user count 10

Step duration (seconds) 10

Step user count (users/step) 10

Warmup duration (seconds) i}

Browser mix IE - 60%, Chrome - 40% hd

[146]

Chapter 5

11. Click on Save once you provide all your details for the load test. Once you save
the test, the Run test button will be enabled, as shown in the following
screenshot:

Load test: LoadTestFunctionApp Runs

Web Scenarios Settings

L Impaort HAR file

12. Click on Run test to start the load test. As the run duration of our load test is 20
minutes, it would take 20 minutes to complete the load test. Once the load is
complete, VSTS provides us with the performance reports, shown as follows:

e Summary Report: This provides us the average response time of the
HTTP trigger for the load of 1K users.

Summary Charts Diagnostics Logs

AVG. RESPONSE TIME USER LOAD REQUESTS PER SEC

18.9. IK.. 28.4«

[147]

Exploring Testing Tools for the Validation of Azure Functions

¢ Performance reports: The following performance report provides us
with insights of how the application is behaving as we keep the load

growing:

D Live Metrics Stream
Loac g

& Incoming Requests

Requests/Sec Request Duration (ms)

Outgoing Requests
Overall Health

f pin MlPause

Requests Failed/Sec

4 servers online

=] Servers ® select colum
SERVER NAME REQUESTS REQUESTS FAILED CPU TOTAL
d97d22a379bbc0dec3cb3558f96d0dab62ce0929043... O/sec Ofsec 0%
c04718f14901585(844aa4fa4f88b035Theefead9d 2 ce.., 8.2/sec Ofsec 3%
a2a40797cbfa%2b2 1fceadfdffal02edd 1eaaabbd7 5., 17/sec Ofsec 10%
Aff9112f0cac3bc9ed 78T bc21b74812f7586444c355¢... 6.7/sec Ofsec 3%

[148]

Chapter 5

There's more...

We can also look at how Azure scales out the instances automatically behind the scenes in
the Live Metrics Stream tab of Application Insights. The following screenshot shows the
instance IDs and the health of the virtual machines that are allocated automatically based
on the load on the Azure serverless architecture. You will learn how to integrate
Application Insights with Azure Functions in chapter 6, Monitoring and Troubleshooting

Azure Serverless Services:

B Incoming Requests

Requests/Sec Reguest Duration (ms)

(#] Outgoing Requests
Overall Health
(=] Servers ®

*Pin I Paus= 4 zervers online

Requests Failed/Sec

SERVER NAME REQUESTS

0fsec

8.2/sec

17/sec

6.7/sec

See also

REQUESTS FAILED CPUTOTAL
O/sec 0%
0fsec 3%
0/sec 10%
Ofsec 3%

e The Monitoring Azure Functions using Application Insights recipe in Chapter 6,
Monitoring and Troubleshooting Azure Serverless Services

[149]

Exploring Testing Tools for the Validation of Azure Functions

Creating and testing Azure Function locally
using Azure CLI tools

Most of the recipes that you have learned so far have been created either using the browser
or using Visual Studio Integrated Development Environment (IDE).

Azure also provides us with tools that help developers who love working with the
command line. These tools allow us to create Azure resources right from the command line
with simple commands. In this recipe, you will learn how to create a new function app and
also understand how to create a function and deploy it to the Azure Cloud right from the
command line.

Getting ready

1. Install Node.js from https://nodejs.org/en/download/.

2. Once you install Node.js, you need to install the Azure Function Core Tools npm
package. Navigate to your Command Prompt and run the following command:

npm i —-g azure—-functions-core-tools

3. As shown in the following screenshot, the tools related to Azure Functions will
get installed:

N Administrator: C\Windows\system32\cmd.exe

:x~AzureCookbook>npm i —g azure—functionsz—core—tools
:slUzersnCookbookadmin~AppDatasRoaming~npm~func —-> C:\lUserssCookbhookadmin“AppDat
~Roaming*npm~node_modulezsazure—functionz—core—tools~lib\main.js
sUserssCookbookadminwAppDatasRoaming~npm~azfun —-> C:\lUsers Cookbookadmin“AppDal
a~Roaming~npm~node_modulessazure—functions—core—toolsxlib'main. js
sUserssCookbookadminwAppDatasRoaming~npm~azurefunctions —> C:xUsers~Cookhookad|
in“ApphatasRoaming~npmsnode_modules*azure—functions—core—tools~lib\main =z
sUzerssCookbookadminwAppDatasRoaming“~npmn

~AzureCookbook?>

[150]

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/

Chapter 5

How to do it...

1. Once the Azure Functions Core Tools are ready, run the following command to
create a new function app:

func init

You will get the following output after executing the preceding command:

=N Administrator: CA\WI

~Hoaming“npm*node_modulesazure—functi
szerssCookbookadmin“AppDatasRoaming™
a~Roaming“~npm~node_modules~azure—funct
sUzerssCookbookadnin“AppDatas~Roaming*
in~AppDatasRoaming~npm~node_modules“a:
sUserssCookbookadminsAppData~Roaming"

:sAzureCookboo B> fune init

Jriting .gitignde

Jriting host.json

Jriting local.szettings.json
reated launch.json

mahle to find git on the path

sAzureCookbook>

Just ignore the unable to find the git in the path error, as we
are not going to use Git in the recipe.

2. Run the following command to create a new HTTP trigger function within the
new function app that we have created:

func new

[151]

Exploring Testing Tools for the Validation of Azure Functions

You will get the following output after executing the preceding command:

reated launch.json ~
inahle to find git on the path

...... foolkboolsEunr new
Eelect a language:

atch

w
avaScript
ypeScript
hp
owerShell
ython

ash

3. You will be prompted to choose the language in which you would like to code.
As shown in the preceding screenshot, I have chosen Cc#. Once you are ready,
press Enter to go to the next step.

4. You will now be prompted to select the function template. For this recipe, I have
chosen HttpTrigger, as shown in the following screenshot. Choose
HttpTrigger by using the down arrow. You can choose the Azure Function type
based on your requirement. You can navigate between the options using the
up/down arrows available on your keyboard:

:NAzureCookbook>*func new
elacrt & lanruane:

Select a template:

BAppInsightsRealtimePowerBl _name
EAppInsightsScheduledAnalytics_name

QueueTrigger

ISAS Token Generator

BcheduledMail

FendGrid

ServiceBusQueueTrigger

LerviceBusTopicTrigger
imerTrigger

[152]

Chapter 5

5. The next step is to provide a name to the Azure Function that you are creating.

Provide a meaningful name and press Enter, as shown in the following
screenshot:

:NAzureCookbook>func new
elect a language:

Function nam

[HettpTriggerGSharp]l Hetplrigger—Corelools

iting C:\AzureCookbook“\HttpIrigger—Corelools \run.csx
Jriting GC:™AzureCookbook\HttpTrigger—CoreToolsssanple.dat
Jriting C:“AzureCookhook HttpIrigger—CoreTools function.json

sAzureCookhook>

6. You can use your favorite IDE to edit the Azure Function code. In this recipe, I

am using Visual Studio Code to open the Ht tpTrigger function, as shown in the
following screenshot:

>

File Edit Selection View

run.csx — AzureCookbook — Visual Studio Code |;|i
Go Debug Help

EXPLORER

C run.csx
4 OPEN EDITORS

L g System.Net;
/O {} function.json
C* run.csx |

P C C 3 sk IR seMess sage req, Trac
"J’?‘ 4 pzuRecoo... Yy WO ¢

-CoreTools
{} functionjson string name = req.GetQueryNameValuePairs()
i readme.md

.FirstOrDefault(q => string.Compare(q.Key

» name"”
C* run.csx Value;

= sample.dat
¢ node_modules dynamic data it req.Content.ReadAsAsync

{} local.settings.json name = name ?? data?.name;

return name == null

? req.CreateResponse(HttpStatusCode.BadRequest,
: req.CreateResponse(HttpStatusCode.OK,

[153]

Exploring Testing Tools for the Validation of Azure Functions

7. Let's test the Azure Function right from your local machine. For this, we need to
start the Azure Function host by running the following command:

func host start

[6/17/ 7
[6/L7/ 7
[6417 /2617
[6/17/ 7
[6/17/ 7
[6/L7/ 7
[6417 /2617
[7
[7
[7
[7
[7
[7
[7

"method™: "GET™,
“uri™: "/

i
Job host started
ted HTTP request: {
tId” 5f31-3d28-4fda -dd83ecabdébb”,
: “GETM,

BfL7S
YAV
617/
617/
bfL7/
bf17/
6i17/

1
tionlevel™: ™Anonym

L N N U N N

Debugger listening on [::

8. Once the host is started, you can copy the URL (which is highlighted in the
preceding screenshot) and test it in your browser along with a query string
parameter name, as shown in the following screenshot:

B <= 3 localhost P BV

6 (:) localhost

"Hello Prawveen Sreeram”

[154]

Chapter 5

Testing and validating Azure Function
responsiveness using Application Insights

Any application is useful for any business only if it up and running. Applications might go
down for multiple reasons, and the following are a few of them:

¢ Any hardware failures such as server crash, bad hard disk, or any other
hardware, or even an entire data center might go down, which might be very rare

e There might be any software errors because of bad code or a deployment error

¢ The site might receive unexpected traffic and the servers may not be capable of
handling the traffic

¢ There might be cases where your application is accessible from one country but
not the others

It would be really helpful if we can get any notification if our site is not available or not
responding to the user requests. Azure provides a few tools for us to help in alerting if the
website is not responding or is down. One of them is Application Insights. You will learn
how to configure Application Insights that ping our Azure Function app for every minute
and alert us if the Function is not responding.

[155]

Exploring Testing Tools for the Validation of Azure Functions

Getting ready

1. Navigate to Azure Management portal, click on New, and then select
Monitoring + Management. Choose Application Insights and provide all the
required details, as shown in the following screenshot:

X Application Insights

Maonito and usage

Name @
FunctionsMonitoring

Featured es Application Type ©
ASP.NET web application
Subscription
Visual Studio Enterprise — MPN

Resource Group @
® Create new @ Use existing

AzureFunctionCookBooks

Location

South Central US

Pin to dashboard

2. Once you review, click on the Create button to create the Application Insights.

[156]

Chapter 5

3. Navigate to your function app's Overview blade and grab the function app URL,
as shown in the following screenshot:

Platform features

Central U5

How to do it...

1. Navigate to the Availability blade and click on Add test button, as shown in the
following screenshot:

itoring - Awvailability

o 2dd test

ahility tes

INVESTIGATE

Application map

smart Detection

vailability

Failures

[157]

Exploring Testing Tools for the Validation of Azure Functions

2. In the Create test blade, enter a meaningful name for your requirement and paste
the function app URL that you have noted down in the URL field of the Create
test blade. In the Alerts blade, provide a valid email address in the Send alert
emails to these email addresses: field to which an alert should be sent if the
function is not available or not responding;:

o D 4 Alerts

Status

Enabled | Disabled

e
URL ping test

ireshold @

Alert failure time
5 minutes

alert em: ioh admins
e
v nd alert emails to these email add
L]
Test frequency e sreeram

5 minutes

Test locations @

5 location(s) configured

0, Test Timeo..

5in 5 m.

[158]

Chapter 5

3. Click on OK in the Alerts blade and then click on the Create button of the Create
test blade to create the test, as shown in the following screenshot in the All
availability tests section:

Oz

11:20PM 1145 PM Jun 12
LARILITY WERAGETEST DURATION

230

ilability tests

TEST NAME

A& Funchionkonitaring

[159]

Exploring Testing Tools for the Validation of Azure Functions

4. In order to test the functionality of this alert, let's stop the function app by
clicking on the Stop button available in the Overview tab of the function app, as
shown in the following screenshot:

Cwverview Settings Platfq
M ctop I Q) Restart ¥ Download p
SEtus Su becription

Running f

5. When the function app was stopped, Application Insights will try to access the
function URL using the ping test and the response code will not be 200 as the
app was stopped, which means the test failed and a notification was sent to the
configured email, as shown in the following screenshot:

B= Microsoft

Azure Application Insights

“functionmonitoring-functionsmonitoring” failed at 3
locations for 5 minutes

Wiew application in Azure Portal Wiew web test in Azure Fortal

[160]

Chapter 5

How it works...

We have created an Availability test where our function app will be pinged once every
five minutes from a maximum of five different locations across the world. You can
configure them in the Test Location tab of the Create test blade while creating the test. The
default criterion of the ping is to check whether the response code of the URL is 200. If the
response code is not 200, then the test has failed, and an alert is sent to the configurable
email address.

There's more...

You can use multi-step web test (using the Test Type option in the Create test blade) if you
would like to test a page or functionality that requires navigating to multiple pages.

[161]

Monitoring and Troubleshooting
Azure Serverless Services

In this chapter, you will learn the following:

¢ Monitoring your Azure Functions

¢ Monitoring Azure Functions using Application Insights

e Pushing custom telemetry details to analytics of Application Insights
¢ Sending application telemetry details via email

e Integrating real-time Application Insights monitoring data with Power BI using
Azure Functions

Introduction

Completing the development of the project and making the application live is not the end of
the story. We need to continuously monitor the application, analyze the performance, and
review the logs to understand whether there are any issues that end users are facing. Azure
provides us with multiple tools to achieve all the monitoring requirements right from the
development stage and the maintenance stage of the application.

In this chapter, you will learn how to utilize this information and take necessary actions
based on the information available.

Monitoring and Troubleshooting Azure Serverless Services

Monitoring your Azure Functions

In this recipe, you will learn the following:

e Individual function logs:
e Reviewing the logs in the Logs section located below the code
editor of the Azure Functions in the Azure Management portal

¢ Reviewing the execution log in the Monitor tab of the Azure
Function

¢ All functions of a given function app:
¢ Log streaming

Getting ready

1. Navigate to the Platform features of the function app and click on Diagnostic
Logs blade, as shown in the following screenshot:

Platforrm features AP de

METWORKING

55L
28 Custorm domains

Authentication / Autharization

Push notifications

MOMNITORMG

Diagnostic logs

| Log streaming
ss Process explarer

0 Security scanning

[164]

Chapter 6

2. In the Logs blade, enable Application Logging (Filesystem) by clicking on the
On button, as shown in the following screenshot if it is Off. And then, click on
Save to save the changes:

azuefunctionscookbook

Application Logaing [Filesysten) @

How to do it...

1. Navigate to the code editor in the Azure Management portal of any Azure
Function. You will notice a bar at the bottom with the title Logs. Click on the bar
to expand it. After expanding, it should look like what is shown in the following
screenshot, where you can view all the logs that show the events that happen
after you open it:

Logs

I

2B17-86-19T15:52:27 Welcome, wou are now connected to log-streaming service.
2817-86-19T15:54:27 HNo new trace in the past 1 min({s).

PA17-8E-19T15:55:27 No new trace in the past 2 min(s).

[165]

Monitoring and Troubleshooting Azure Serverless Services

2. Let's navigate to Monitor tab to view all the past events that happened with the
Azure Function. The following is the list of events that happened in the
RegisterUser function that we created in our previous chapters:

Invocation log & Refresh live ewent stream
i Status [retai

RegisterUser [Method: POST, Uri: ... 12 hours aga (837 ms)

v s

RegisterUser (Method: POST, Uri: ... 16 days ago (3,490 ms)

RegisterUser [Method: POST, Uri: ... 16 days ago (3,548 ms)

RegisterUser [Method: PQST, Uri: ..) 16 days ago (1,937 ms)

RegisterUser (Method: POST, Uri: ... 16 days ago (1,545 ms) I

RegisterUser [Method: POST, Uri: ... 16 days ago (1,165 ms)

RegisterUser [Method: PQST, Uri: ... 16 days ago (1,42 ms)

RegisterUser (Method: POST, Uri: ... 16 days ago (4,193 ms)

£ 4 A XxERgL 4 < @ <

RegisterUser (Method: POST, Ui .. 17 days ago (1,141 ms)

3. Click on any of the log items for which the Status is a success. As shown in the
following screenshot, you will see all the request and binding details of the
particular event that happened with this function:

Invocation details

Parameter

reg fethod: POST, Uril: . . .
httpsidfazurefunctionscookbook.azurewehsites,netfapi/Registerlser

log

objUserProfileTable thldserProfile

objUserProfileCueneltern userprofileimagequeus

Message

binder

ohjsmsmessage {Ta™"+ 91 554592 59539" "From ™"+ 141053949663}
_context 03bEd10d-ebd2-4001-24c1-B 3 7149247

[166]

Chapter 6

4. Let's now click on any of the log item for which the status column indicates
failure. You will see the request and binding details along with a special field
named Failure that provides details about the reason for the failure. Detailed
error details are available in the Logs section of the following screenshot:

Invocation details

Parameter

reg Method: POST, Uri_: . _ _
httpsiffazurefunctionscookbook azurewebsites netfapifRegisterlse

log

ohjlserProfileTabile thiUserProfile

ohjllserProfileQueueltem wserprofileimagequene

message
binder
ohjsmsmessage Mo+ 91 954592 59539", "Fram™ "+ 14103 3496637
contesxd COESSace-02hE- 4506 021 20h3hShib2bbe
Failure Exception has been thrown by the target of an invocation,
Logs
e Rowe 1d: 20742 3100 1fdc-dbelaffT-fb 7 od 606054 —

Exception while executing function: Functions. Registerlser
Microsoft.Azure Meblobs,Host. FunctionlnwocationException : Exception
wehile executing function: Functions Registerldser - =
Sustem. Reflection. TargetinwocationException @ Exception has been thrown
by the target of an irvocation, ---= System.FormatException @ Blob
identifiers must be in the format ‘containerblob’,

at Microszoft.Azure Weblobs Host.Elobs. BlobPath.Parse[String
value,Boolean isContainerBinding)

at Microsoft.Azurewweblobs Host.Elobs.BindableBlobPath.Create(String
pattern,Boolean isContainerBinding)

at aswnir e

[167]

Monitoring and Troubleshooting Azure Serverless Services

5. In order to view live data of the events, navigate to the Platform features tab of
the function app and click on Log streaming , shown as follows:

Flatform features APl de

METWORKING

350
B Custom domains
Suthentication / Autharization

Push notifications

MONITOR NG

Diagrostic log
| Log streaming
o Process explorer

L Security scanning

6. Clicking on the Log streaming link in the preceding screenshot will take you to
the Streaming logs window, where you can view all the events happening in all
the functions of the selected function app:

[168]

Chapter 6

. Streaming |¢

EE] &pplication logs EE Wieh server logs Il Pause » Clear

Application lags

B unning
“"version™: "1.8.118A8z.8"

17-86-19T15:21:32. 691 Execuied HITP request: |
"requestid": "adaBcdlf- 8E9e- 486~ 8el- a5 0I5693ae?",
"method™: "GET",
"uri': "/admin/bost/status™,
"awrthorizationLevel™: "Sdmin”
H
A17-86- 19T15: 24:32. 691 Response details: {
"requestidT: "adascdls- 8E9e- 4986 8eld- aS9C95693asy",
"status": "DK" k
}
MW17-86-19T15:21:58..992 Executing HITP request: {
"request1d": "8adoachz- f495- Aadf- be58- 3d8be bhd hse",

2817-86- 19T15:24:58.982 Execuied HITP request: |
"request1d": "8adoachz- f495- Aadf- be58- 3d8be bhd hse",

uri'™: s,
"authorizationLevel™: "Snonymous"
i
A17-86-19T15: 21:58.082 Fesponse details: {
"requestIid”: "8adodchz- £.195- A6df - bo 58- 3dabe bbdsbae™ ,
“status": "0K™

[169]

Monitoring and Troubleshooting Azure Serverless Services

There's more...

Each function event is logged in an Azure Storage Table service. Every month, a table is
created with the name AzureWebJobsHostLogs<Year><Month>.

As part of troubleshooting any error, if you would like to get more details of any error, you
first get the _context field available in the Invocation details section and look up that data
in RowKey of the AzureWebJobsHostLogs table.

Monitoring Azure Functions using
Application Insights

Application Insights (AlI) is an application performance management service that helps us
in monitoring the performance of an application hosted anywhere. Once you integrate Al
into your application, it will start sending telemetry data to your Al account hosted on the
cloud. In this recipe, you will learn how simple is it to integrate Azure Functions with Al

Getting ready

We created an Al account in the Testing and validating Azure Function responsiveness using
Application Insights recipe of chapter 5, Exploring Testing Tools for the Validation of Azure
Functions. Create one, if not created already, using the following steps:

1. Navigate to Azure Management portal, click on New, and then select Monitoring
+ Management.

2. Choose Application Insights and provide all the required details. In case if you
have already created the Application Insights in previous recipe, you can ignore
this step.

[170]

Chapter 6

How to do it...

1. Once the Al account is created, navigate to the Overview tab and grab
Instrumentation Key, as shown in the following screenshot:

o Functic

Applization Insig

Fearch jUirl+s)

@ Overview
B adtivity log
;ﬁ Access control [IAR)

& Tags

INVESTIGATE

"= application map

(30 minwte granubrity] - A5PMET webappliztion

Q) search

0 MEW — Instant answers for hard questions about your app, Click Analytics for mare,

Essentials

Resoumce group (changel
AzureFunctionsCookBook

Location

South Central US
Subscription name (changel

o ST e

Subecription 1D

ilil Metrics Explorer

== Analytics C'—) Time range === ffore

Type

A5PMET

Instrurnentation Key

Ab11397e-627c-4! il

2. Navigate to Function Apps for which you would like to enable monitoring and
go to Application settings , as shown in the following screenshot:

AzureFunctionst

Function &pps

5 Design Team

= Function &pps
o AzureFunctiDnsG Ll
w == Fundions =

p f CreateProfilePictures

b f CropProfilePictures

10 “szyreFunctionsCookBook” »®

Owverview

,D Search features

GEMERAL SETTINGS

Application sas I

m Properties

Py

All setfings

Settings

Platform featur@

METWORK NG

551

B8 Custam domains

Aythentication / Autharization

[171]

Monitoring and Troubleshooting Azure Serverless Services

3. Add a new key with the name APPINSIGHTS_INSTRUMENTATIONKEY and
provide the instrumentation key that you have copied from the Al account,
shown as follows, and click on Save to save the changes:

WEBSITE_COMTEMTSHARE azurefunctionscookbook3.,

WEBSITE_MODE_DEFAILT... &850

azurefunctionscookbook_.. 007 B0 @ B
SendGridspikey 5
TwilioAccountsID A
TwilioAuthToken B

APPIMSIGHTS_IMSTRURMERT., 4b11 = 15e3-51

Kep Walue

4. If everything goes fine, you will see the Application Insights link in the
Configured features section, as shown in the following screenshot:

. ‘ O L
Status Subecription
Running]
Subscription (D

-4

onfigured features

@ Application Insights

[172]

Chapter 6

5. That's it; you can start utilizing all the features of Al to monitor the performance
of your Azure Functions. Open Application Insights and the RegisterUser
function in two different tabs to test how Live Metrics Stream works:

1. Open Application Insights and click on Live Metrics Stream in the
first tab of your browser, as shown in the following screenshot:

Functi lonitor,.. A
Ny

Appliation Insights

2 Search i+

? e P B
B Activity log
;,:. Access cantrol [I&M)]

< Tags

INWESTIGATE

=7 Application map

Sratt Detection

o
l-"lr Liwe betrics Stream

il Metrics Explorer

Availability

2. Open the RegisterUser function in another tab and run a few tests.

[173]

Monitoring and Troubleshooting Azure Serverless Services

6. After you have completed the tests, go to the tab that has Al You should see the
live traffic coming to your function app, as shown in the following screenshot:

s Stream

Function=Maonitoring

- Incoming Requests

Requests/Sec

How it works...

We have created an Al account. Once you integrate Al's Instrumentation Key with the
Azure Function, the runtime will take care of sending the telemetry data asynchronously to
your Al account hosted on Azure.

There's more ...

In Live Metrics Stream, you can also view all the instances along with some other data,
such as the number of requests per second handled by your instances.

Pushing custom telemetry details to
analytics of Application Insights

We have been asked by our customers to provide analytic reports of a derived metric with
in AL So, what is a derived metric? Well, by default, Al provides you with many insights
about the metrics like requests, errors, exceptions, and so on. You can run queries on the
information that Al provide using Al - Analytics query language, say, if you would like to
understand the number of requests that are coming to a website for every hour a new
metric derived from the out of the box metric.

[174]

Chapter 6

In this context, requests per hour is a derived metric) and if you would like to build a
new report within Al then you need to feed Al about the new derived metric on a regular
basis. Once you feed the required data regularly, Al will take care of providing the reports
for our analysis.

We will be using Azure Functions that feed the AI with a derived metric named requests
per hour:

Feed Application derived metrics data to App Insights using Azure Functions

[

App Insights 1

N

Run Query
Get guery results
Track Metric to App Insights

Feed every request

Website e

Azure Functions

For this example, we will develop a query using Analytics query language for the request
per hour derived metric. You can make changes to the query to generate other derived
metrics for your requirement, say, requests per hour for my campaign or something similar to
that.

You can learn more about Analytics query language at https://docs.
microsoft.com/en-us/azure/application-insights/app-insights-

analytics—-reference.

[175]

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference

Monitoring and Troubleshooting Azure Serverless Services

Getting ready

¢ Create a new Al account if you don't have one already.

e Make sure you have a running application that integrates with the Al. You can
learn how to integrate your application with Al at https://docs.microsoft.

com/en-us/azure/application-insights/app-insights-asp-net.

How to do it...

We will perform the following steps to pushing custom telemetry details to analytics of
Application Insights.

Creating Al function

1. Create a new function template by choosing Monitoring in the Scenario drop-
down, as shown in the following screenshot. You can also search for scheduled

analytics to easily find the template.

a template

Language: | C# Scenario:

Application Insights scheduled analytics

heduled anal'_-,-‘ticsl

A function that derives metrics by performing deep analysis
of app telemetry \pplication Insights

[176]

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net

Chapter 6

2. Now, click on C# in the preceding screenshot and provide the name along with
schedule frequency in which the function need to run:

Application Insights scheduled analytics

New Function

Feed&lWithCustomDerivedMetrics

Timer trigger

Schedule €

3. As shown in the preceding screenshot, click on the Create button to create the
function.

[177]

Monitoring and Troubleshooting Azure Serverless Services

Configuring access keys

1. Now, navigate to Al's Overview blade, as shown, and copy the Instrumentation
Key. We would be using the Instrumentation Key to create an application
setting named AI_IKEY in the function app:

| NN} N NN ————
q Search m Metrics Explarer =8 Analytics @ Time range =e= hiore

Eszentials -~

Resmninme oy i@ ngsl Ty
A5PMET
Location Instrumentation ke

T B f

B

Subscription name [changel
|

Subscription D

2. Navigate to API Access blade, copy the Application ID. We would be using this
Application Id to create a new app setting with the name AT_APP_1ID in the
function app:

L i

Application Insig hts

0 Delete &P key [Help

ofe Create AP key

Anplication 1D @

Properties
L n " - .

O Search (ot

v Alerts
& Smart Detection settings AP| KEV DESCRIFTION LAST USED CREATED ON PERMISSIONS
+ Features + pricing You haven't set up any &P keys, Click 'Create AP key' to get started, Learn more

k4 Data wolume managerment

€9 Continuous expart

4]

Performance Testing

AP Access

Wark Items

[178]

Chapter 6

3. We also need to create a new API key. As shown in the preceding step, click on
the Create API key button to generate the new API key, as shown in the
following screenshot. Provide a meaningful name, check the Read telemetry
data, and click on Generate key:

Create an APl key to read Spplication Insights data,

APl keys are used by applications outside the browser to access this resource,
Your APl keyws should be managed like passwords, Keep them secret,

Browide s descrintinn ta help you identify this &P key in the future, @

DrerivedMetrics

LhnnsEwhat this AP ke will allow apps to do:
+' Readtelemetry @

Wirite annotations @

Authenticate 50K contral channel @

| Generate key |

4. Once the Generate key is clicked on, you can view and copy the key, as shown in
the following screenshot. We would be using this to create new app setting with
the name AI_APP_KEY in our function app:

Create an APl key to read Application Insights data,

AP keys are used by applications autside the browser o access this resource,

Your &P keys should be managed like passwards, Keep them secret,
ket

Make sure you copy this key now. We don't store it, and after you close this blade
you won't be able to see it again.

[179]

Monitoring and Troubleshooting Azure Serverless Services

5. Now, Create all the three App setting keys in the Function App, as shown in the
following screenshot. All these three keys will be used in our Azure Function
named as FeedAIwithCustomDerivedMetric.

¥ Discard

Remote Wisual Studio wersian | 20132 | 2013 | 2015 | 20171

App settings
5
5
5
|] |] 5
S
5
HOUHMG_EXTEMSIOM_WEH.., <02 5
AlIKEY |] n 5
Al_&FPID - " 5
Al_APP_KEY - » v . 5

[180]

Chapter 6

Integrating and testing Al query

1. Now, it's time to develop the query that provides us with the derived metric
value requests per hour. Navigate to the AI Overview blade and click on the

Analytics button, as shown in the following screenshot:

i

:ﬂ:ppli:ni:-n Insights - 2 30 minute q @ nuls rity] ' MET web appliation

0 Search fotried) Cg Search gy Metrics Explorer | S5 Analytics C'-) Time range #es More

Essentials -~

et agpteicimay] HE.NET

Location Instrurnentation key
| |

D Overview
E acdivity log
aba Access control [AM)

& Tags

Subscription name (changs)

Subecription 1D
u u

INYESTIGATE

2. You will be taken to the analytics website, as shown in the following screenshot.
Click on the new tab icon where we write the query to pull the required data to
derive our custom metric:

SCHEM A FILTER L Open a new tab to begin writing your own queries, or try with our demo data

e —

3. Write the following query in the new query tab. You can write your own query as
per your requirements. Make sure that the query returns a scalar value:

requests
| where timestamp > now(-1h)
| summarize count ()

[181]

Monitoring and Troubleshooting Azure Serverless Services

4. Once you are done with your query, run it by clicking on the Go button to see the
count of records, as shown in the following screenshot:

f_uj TLj' Eﬂ Export ~ o] Set in query

New Query 17

Fequests
| where timestamp > now(-1h)
| summarize count()

Completed & 00:00:00553 1 records loaded
ZZTABLE allCHART Columns v A
[tag a column header and drop it here to group by that calurmn

count_ 5
v 20,294

5. We are now ready with the required Al query. Let's integrate the query with our
FeedAIwithCustomDerivedMetrics function. Navigate to the Azure Function
code editor and make the following changes:

1. Provide a meaningful name for our derived metric, in this case,
Requests per hour.

2. Replace the default query with the one that we have developed.

3. Save the changes by clicking on the Save button:

29 public static async Task Run(TimerInfe myTimer, Tracelriter log)

@ {

31 if (myTimer.IsPastDue)

32

33 log.Warning($"[Warning]: Timer is running late! Last ran
34 1

35

36 /¢ [CONFIGURATION_REQUIRED] update the query accordingly for f
37 #f be sure to run it against Application Insights fnalytics p
i £ output should be a number if sending deriwed metrics

39 £ [Application Insights Analeedcs] https://docs.microsoft. cof
48 T = e

41 I name: “Requests per hour",

4 auery sl

43 requests

448 | where timestamp » now(-1h)
458 | summarize count()

& »

47 log: log

48 'H

49+

o

[182]

Chapter 6

6. Let's do a quick test to see whether you have configured all three app settings
and the query correctly. Navigate to the Integrate tab and change the run

frequency to one minute, as shown in the following screenshot:

Timer trigger (myTimer) delete

Timestamp parameter name €

myTimer

Schedule @

[y W

7. Now, let's navigate to the Monitor tab and see whether everything is working
fine. If there are any problem, you will see a X mark in the Status column. View
the error in the Logs section in the Monitor tab by clicking on the Invocation log

entry:

Faor a richer monitaring experience, including live metrics and custom queries, we recommend using &zure &

Success count since Jun 1st

127

Invocation log &3 Refresh

Function

Feed&lwithCustomDerivedhetrics [2017-06-25T100320 ..
Feed&lwithCustomDerivedhetrics [2017-06-25T10035:0 ...

Feed&hwith CustomDerivedMetrics [2017-06-25T10037:0 ...]

Details: Last ran (duration)

ifa fewy seconds (1,856 ms)

a minute ago (1,038 ms)

inaminute (1,593 ms)

Errar o

1

live event stream

8. Once you make sure that the function is running smoothly, revert the Schedule

frequency to one hour.

[183]

Monitoring and Troubleshooting Azure Serverless Services

Configuring the custom derived metric report

1. Navigate to the AI's Overview tab and click on Metrics Explorer, as shown in the
following screenshot:

il

.'L'<j|:.|:-|i:|ti:-n Inzights - 135t 24 houts (30 minut= g@nubrity] - ASPMET webappliation

O Search (Ctri+)) O, search | jlip Metrics Explorer]) 25 analktics (D Time range o= hMore

0 Click here to see a map of KPls foryour app components and dependencies, =
@‘ e i e

Essentials

B activity log
Mmmmtme mamare foim o Type
saa Access cortrol (1AM ASPNET
Location Instrimentation Kes
& Tags West Europe -

change]
Ay

INVEETIGATE Subscription 1D

= Application map

2. Metrics Explorer is where you will find all your analytics related to different
metrics. In Metrics Explorer, click on the Edit button located in any report to
configure our custom metric, as shown in the following screenshot:

0 minute g @ nukrity] -

+ Add chart G Time range W Filters O Refresh . Alert rules #+= Maore
2 O
100 Edit
=)
=n}
40 Click the edit button to configure this chart,
20 - NO METREZSSELEZTEC &
a —
‘5 M lun2g 5.4 12 PM A A new chart

3. After clicking on the Edit button, you will be taken to the Chart details blade,
where you can configure your custom metric and all other details related to the
chart. In the Metrics section, search for your custom metric name like I did, as
shown in the following screenshot, and click on it:

[184]

Chapter 6

= Chart details

m Show adwanced settings @

Chart type @
Line Area Bar Grid

Aggregation @

Lwerage w
Chart height @

- | 2
Color palette @

Blue & Green v

Grouping @

on | off |
Metrics @)

hau

* Custom

+| Requestsperhour

If you don't see your custom metric under Custom section, as shown in
the preceding screenshot, change the time range values as per the time
you ran your Azure Function.

4. That's it; the report will start showing the data as per your configuration. This is
what it looks like as soon as you check your Metric:

Last 24 howrs (20 minute g@anulrity] -

+ Add chart C'-) Time range "W Filters tJ Refresh . Alert rules =+ More

25K
20K
15K
10K

5K REQUESTSPERHOUR @

xy)| 1954«
5 M lunz2s &AM 12 M Adld new chart

[185]

Monitoring and Troubleshooting Azure Serverless Services

How it works...

This is how the entire process works:

e We have created the Azure Function using the default Delete repeated word

e We have configured the following keys in the Application Settings of the Azure
Function app:
¢ Al's Instrumentation Key

¢ The application ID
e The API access key
¢ The Azure Function runtime will automatically consume the AI API, run the

custom query to retrieve the required metrics, and perform the required
operations of feeding the derived telemetry data to Al

¢ Once everything in the Azure Function is configured, we develop a simple query
that pulls the request count of the last 1 hour and feed ir to the Al as a custom
derived metric. This process repeats every 1 hour.

e Later, we configure a new report using Metrics Explorer of Al with our custom
derived metric.

See also

e The Integrating Azure Functions using Application Insights recipe
e The Sending application telemetry details via email recipe

Sending application telemetry details via
email

One of the post-live activities of your application would be to receive a notification email
about the details of the health, errors, response time, and so on at least once a day.

Azure Function provide us with the ability to get all the basic details using a function
template with the code that's is responsible for retrieving all the required values from the Al
and the plumbing code of framing the email body and sending the email using SendGrid.
We will look at how to do that in this recipe.

[186]

Chapter 6

Getting ready

1. Create a new SendGrid account if you have not yet created one and get the
SendGrid API key.

2. Create a new Al account if you don't have one already.
3. Make sure you have a running application that integrates with the Al.

You can learn how to integrate your application with Al at https://docs.
microsoft.com/en-us/azure/application-insights/app-insights-asp-
net.

How to do it...

1. Create a new function by choosing Monitoring in the Scenario dropdown and
select the AppInsights Scheduled Digest - C# template, as shown in the
following screenshot:

A Scheduled Digesﬂ Language: _ Scenaria: | Monitoring v

Application Insights scheduled digest

3

A function that sends a daily Application Insights telemetry
report via email

[187]

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net.

Monitoring and Troubleshooting Azure Serverless Services

2. Once you select the template, you will be prompted to provide the name of the
function, scheduled frequency, and SendGrid API Key for the SendGrid output
binding, as shown in the following screenshot:

Application Insights scheduled digest

Mew Function

nsightsDigest

[188]

Chapter 6

3. Once you review all the details, click on the Create button of the previous step to
create the new Azure Function. The template creates all the code that is required
to query the data from Al and send an email to the person mentioned in the To
address of the preceding screenshot.

Make sure that you follow the steps mentioned in Configuring access keys
section of the Pushing custom telemetry details to analytics of Application
Insights recipe to configure these access keys: Al Instrumentation Key, the
application ID, and the API access key.

4. Navigate to the run. csx function and change the app name to your application
name, as shown in the following screenshot:

£f [COMFIGURATION _REQUIRED] configure J{appMame} accordingly for wyour appfemail
string appMame = “"Azure Function Serwerless tookbook";

5. If you have configured all the setting properly, you will start receiving an email
based on the timer settings.

6. Let's do a quick test run by clicking on the Run button available above the code
editor, as shown in the following screenshot:

#r "MNewtonsoft.Json”
#r “sendarid”

1
2
3
2

e dng Cuctem e S g b nn

[189]

Monitoring and Troubleshooting Azure Serverless Services

7. This is the screenshot of the email that I received after clicking on the Run button
of the preceding screenshot:

Azure Function Serverless Cnukhnnkl:laily telemetry report 6/25/2017
The following data shows insights based on telemetry from last 24 hours
Total requests 470,256
Faled requests 1,263
Average response tune T178 ms
Total dependencies 0
Failed dependencies 0
Average response ttme e ms
Total views 0
T otal exceptions 130
Overall Availability 100.0 %%
Average response time 457 8 ms

How it works...

The Azure Function uses the AI API to run all the Al analytics queries, retrieves all the
results, frames the email body with all the details, and invokes the SendGrid API to send an
email to the configured email account.

There's more...

Azure templates provide the default code that has a few queries that are in general useful in
monitoring the application health. If you have any specific requirement of getting
notification alerts, go ahead and add new queries to the GetQuerystring method. In order
to incorporate the new values, you would also need to change the DigestResult class and
the GetHtmlContentValue function.

See also

e The Sending an email notification to the administrator of the website using the SendGrid
service recipe of chapter 2, Working with Notifications Using SendGrid and Twilio
Services

[190]

Chapter 6

Integrating real-time Al monitoring data with
Power Bl using Azure Functions

Sometimes, you would need to view some real-time data of your application availability or
any information related to your application health on a custom website. Retrieving the
information for the Al and displaying it in a custom report would be a tedious job as you
need to develop a separate website and build, test, and host it somewhere.

In this recipe, you will learn how easy is to view real-time health information of the
application by integrating AI and Power BI. We will be leveraging Power BI capabilities for
live streaming of the data and Azure timer functions to continuous feed health information
to Power BI. This is a high-level diagram of what we will be doing in the rest of the recipe:

Integrating real-time App Insights monitoring data with Power Bl using Azure
Functions

M

App Insights fr—ee,

Run Query

Get query results
Feed every request

Website

A

Power Bl l€——FReal-time updates Azure Functions

keys section of the Pushing custom telemetry details to analytics of Application
Insights recipe to configure these access keys: Al Instrumentation Key, the

0 Please make sure that you follow the steps mentioned in Configuring access
application ID, and the API access key.

[191]

Monitoring and Troubleshooting Azure Serverless Services

Getting ready

1. Create a Power Bl account at https://powerbi.microsoft.com/en-us/.
2. Create a new Al account if you don't have one already.

3. Make sure that you have a running application that integrates with the Al You
can learn how to integrate your application with Al at https://docs.microsoft.

com/en—-us/azure/application-insights/app-insights-asp-net.

How to do it...

We will perform the following steps to integrate AI and Power BI.

Configuring Power Bl with dashboard, dataset, and
push URI

1. If you are using the Power BI portal for the first time, you might have to click on
Skip for now on the welcome page, as shown in the following screenshot:

Meed more guidance? Try this tutorial or watch a video
Microsoft AppSource Import or Connect to Data
My organization Services Files Databases
Browse content packs Choose content packs Ering in your reports, Connect to live data in
that other people in your frorm online services that workbooks, or data from Azure SQL Database and
organization have Yyou Use, Excel, Power Bl Desktop rore.
published, or C5V files,
Get A Get A Get A Get A
[f) Samples <} Solulion Templates . Partner Showcase Skip for now

[192]

https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net

Chapter 6

2. The next step is to create a streaming dataset by clicking on Create and then

choosing Streaming dataset, as shown in the following screenshot:

ite

—|— Create

Dashboard
Report

Dataset

I Streaming dataset I

3. In the New streaming dataset step, select API and click on the Next button, as
shown in the following screenshot:

i

API

New streaming dataset

Choose the source of your data

pn

PUBNUB

Cancel

[193]

Monitoring and Troubleshooting Azure Serverless Services

4. In the next step, you need to create the fields of the streaming dataset. Provide a
meaningful name to the dataset and provide the values that you would like to
push to Power BI. For this recipe, I have created a dataset with just one field
named RequestsPerSecond of type Number and clicked on Create , as shown
in the following screenshot:

Create a streaming dataset and integrate our APl into your device or
application to send data. Learn more about the API.

Dataset name *

Requests

Values from stream *

RequestsPerSecond Number ~ |

Enter a new value name Text hd

[
{

"RequestsPerSecond"

uw
[e=]
3]

.

Historic data analysis
e

Back Create Cancel

5. Once you create the dataset, you will be prompted with a Push URL as shown in
the following screenshot. You will be using this Push URL in the Azure
Functions to push the RequestsPerSecond data every 1 second (or depending
on your requirements) with the actual value of request per second. Click on
Done.

[194]

Chapter 6

© Streaming dataset created

The schema for Requests is created.

Push URL

https://api.powerbi.com/beta /et

Raw cURL

[
{
"RequestsPerSecond" GB.6
}
]

s

PowerShell

Done

6. The next step is to create a dashboard along with a tile in it. Let's create a new
dashboard by clicking on Create and choosing Dashboard , as shown in the

following screenshot:

Report
Dataset

Streaming dataset

Streaming

[195]

Monitoring and Troubleshooting Azure Serverless Services

7. In the Create dashboard popup, provide a meaningful name and click on Create,
as shown in the following screenshot, to create an empty dashboard:

Create dashboard X

Dashboard name

| ApplicationHealth

Create Cancel

8. In the empty dashboard, click on the Add tile button to create a new tile. Clicking
on Add tile will open a new popup, where you can select the data source from
which the tile should be populated:

Add tile

Select source

VIDEO

REAL -TIME DATA

(©)

CUSTOM
STREAMING DATA

Next Cancel

[196]

Chapter 6

9. Select CUSTOM STREAMING DATA and click on Next, as shown in the
preceding screenshot. In the following step, select the Requests dataset and click

on the Next button:

Choose a streaming dataset

YOUR DATASETS

Requests

Manage datasets

Back

Add a custom streaming data tile

+ Add streaming dataset

Mext

Cancel

Monitoring and Troubleshooting Azure Serverless Services

10. The next step is to choose Visualization type (it is Card in this case) and select
the fields from the data source, as shown in the following screenshot:

Visualization Type

Card v

ah &
Fields

RequestPerSecond

Back Next Cancel

11. The final step is to provide a name to your tile. I have provided requests per
second. The name might not make sense in this case. But you are free to provide
any name as per your requirements.

Creating Azure Al real-time Power Bl - C# function

To create Azure Al real-time Power BI using the C# function, complete the following steps:

1. Navigate to Azure Functions and create a new function using the following
template:

[198]

Chapter 6

Application Insights Power Bl

A function that ime availability data from
Application Insights to rer BI

2. Click on C# in the preceding screenshot and provide the Name and click on
Create button as shown in the following screenshot:

Application Insights Power Bl

New Function

[199]

Monitoring and Troubleshooting Azure Serverless Services

3. Replace the default code with the following code. Make sure that you configure
the right value for which the analytics query should pull the data. In my case, I
have provided five minutes (5m) in the following code:

#r "Newtonsoft.Json"

using System.Configuration;

using System.Text;

using Newtonsoft.Json.Ling;

private const string AppInsightsApi =
"https://api.applicationinsights.io/beta/apps";

private const string RealTimePushURL = "PastethePushURLhere";

private static readonly string AiAppId =
ConfigurationManager.AppSettings ["AI_APP_ID"];

private static readonly string AiAppKey =
ConfigurationManager.AppSettings ["AI_APP_KEY"];

public static async Task Run(TimerInfo myTimer, TraceWriter
log)
{
if (myTimer.IsPastDue)
{
log.Warning ($" [Warning]: Timer is running late! Last ran
at: {myTimer.ScheduleStatus.Last}");
}

await RealTimeFeedRun (

query: @"

requests

| where timestamp > ago (5m)

| summarize passed = countif (success == true),

total = count ()
| project passed

"
’

log: log

)i

log.Info ($"Executing real-time Power BI run at:
{DateTime.Now}") ;

private static async Task RealTimeFeedRun(string query,
TraceWriter log)
{
log.Info ($"Feeding Data to Power BI has started at:
{DateTime.Now}") ;
string requestId = Guid.NewGuid() .ToString();
using (var httpClient = new HttpClient ())

{
httpClient.DefaultRequestHeaders.Add ("x—api-key",

[200]

Chapter 6

AlAppKey) ;
httpClient.DefaultRequestHeaders.Add ("x-ms-app",
"FunctionTemplate");
httpClient.DefaultRequestHeaders.Add ("x-ms-client—
request—-id", requestId);
string apiPath = $"{AppInsightsApi}/{AiAppId}/query?
clientId={requestId}×pan=P1lD&query={query}";
using (var httpResponse = await
httpClient.GetAsync (apiPath))
{
httpResponse.EnsureSuccessStatusCode () ;
var resultJson = await
httpResponse.Content.ReadAsAsync<JToken> () ;
double result;
if (!double.TryParse(resultJson.SelectToken

("Tables[0] .Rows[0][0]")?.ToString (), out result))
{
throw new FormatException ("Query must result in a
single metric number. Try it on Analytics before
scheduling.");
}
string postData = $"[{{ "requests": "{result}i"

PRI
log.Verbose ($" [Verbose] : Sending data: {postData}l");
using (var response = await

httpClient.PostAsync (RealTimePushURL, new
ByteArrayContent (Encoding.UTF8.GetBytes (postData))))
{

log.Verbose ($" [Verbose] : Data sent with response:
{response.StatusCode}");

}

4. The preceding code runs an Al analytics query that pulls data for the last five
minutes (requests) and pushes the data to Power BI push URL. This process
repeats continuously based on the timer frequency that you have configured.

[201]

Monitoring and Troubleshooting Azure Serverless Services

5. This is a screenshot that has a sequence of pictures that show the real-time data:

Requests per second Requests per second Requests per second

418 466 566

How it works...

We have created the following in the speific order:

¢ A streaming dataset in the Power BI application

¢ A dashboard and new tile that can display the values available in the streaming
dataset

¢ A new Azure Function that runs an Al analytics query and feeds data to the
Power BI using the push URL of the dataset

¢ Once everything is done, we can view the real-time data in the Power BI's tile of
the dashboard

There's more...

e Power BI allows us to create real-time data in the reports in multiple ways. In this
recipe, you learned how to create real-time reports using steaming dataset. The
other ways are the Push dataset and the PubNub streaming dataset. You can
]earnInoreaboutaﬂthreeapproaCheSathttps://powerbi.microsoft.com/enf
us/documentation/powerbi-service-real-time-streaming/.

e Be very careful when you would like to have the real-time application's health
data. The AI API has a rate limit. Take a look at https://dev.
applicationinsights.io/documentation/Authorization/Rate-limits to
understand more about API limits.

[202]

https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits

Code Reusability and
Refactoring the Code in Azure
Functions

In this chapter, you will learn the following recipes:

e Creating a common code repository for better manageability within a function

app
Shared code across Azure Functions using class libraries

Azure Functions and precompiled assemblies

Migrating legacy C# application classes to Azure Functions using PowerShell

Using strongly typed classes in Azure Functions

Introduction

For every business application, there might be some code that is reusable in different
modules. So, it's important that your code should reusable to save efforts of your
development time. In this chapter, we will learn how to created shared classes and use them
in the serverless functions. We will also learn how to migrate the existing background
applications into Azure Functions with minimum efforts.

Code Reusability and Refactoring the Code in Azure Functions

Creating a common code repository for
better manageability within a function app

In all our previous chapters, we wrote all the code in the run function. I did that to make
everything simple and focus more on conceptual stuff related to Azure Functions instead of
code architecture and all. Now, it's time to discuss the features that Azure Functions
provide related to code architecture and re-usability. Most of the recipes covered in this
chapter talk about them.

In our RegisterUser function, we could refactor the code into multiple classes and
functions. However, we will not focus on refactoring all the code, but we will just pull out
the code related to sending the emails.

In your application, make sure you use the architectural design principles
and practices based on your requirements.

Let's start refactoring the code.

How to do it...

1. Create a new ManualTrigger - C# template, as shown in the following
screenshot, with the name SharedClasses:

Choose a template below or go to the quickstart

\f/ Manual trigger

A function that is triggered manually via the portal "Run™
button

F# JavaScript TypeScript

[204]

Chapter 7

2. Click on C# link shown in the preceding screenshot. It opens up a new popup
shown as follows:

Manual trigger

New Function

Lanc

Name:
ManualTriggerCSharpl
| cee

3. Now, click on Create button to create the new Manual trigger function.

4. Once the trigger is created, navigate to the View files tab and add a new file
named Helper.csx by clicking on the Add button, as shown in the following

screenshot:

View files | Test

+Add | fUpload 1 Delete

= ManualTriggerCSharpl

[function.json

B run.csx

O Helper.csx

5. Copy the following code and paste in the new Helper. csx file. The following
code accepts all the information required for sending an email using SendGrid:

#r "SendGrid"

using System.Net;

using SendGrid.Helpers.Mail;
public static class Helper

[205]

Code Reusability and Refactoring the Code in Azure Functions

{
public static Mail SendMail (string strSubject, string
strBody, string strFromAddress, string strToAddress, string
strAttachmentName)
{

Mail objMessage = new Mail();

objMessage.Subject = strSubject;

objMessage.From = new Email (strFromAddress);

objMessage.AddContent (new Content ("text/html", strBody)) ;

Personalization personalization = new Personalization();

personalization.AddTo (new Email (strToAddress)) ;

objMessage.AddPersonalization (personalization);

Attachment objAttachment = new Attachment ();

objAttachment.Content = System.Convert.ToBase64String
(System.Text .Encoding.UTF8.GetBytes (strBody)) ;

objAttachment.Filename = strAttachmentName;

objMessage.AddAttachment (objAttachment) ;

return objMessage;

}
}

6. Now, let's make the changes to the Run method of the RegisterUser function
that can use the preceding SendMail shared method. This is the updated Run
method that uses the SendMail method of SharedClasses:

#r "Microsoft.WindowsAzure.Storage"
#r "Twilio.Api"
#r "SendGrid"

#load "../SharedClasses/Helper.csx"

using System.Net;

using SendGrid.Helpers.Mail;

using Microsoft.WindowsAzure.Storage.Table;

using Newtonsoft.Json;

using Twilio;

using Microsoft.Azure.WebJobs.Host.Bindings.Runtime;

public static void Run (HttpRequestMessage req,
TraceWriter log,
CloudTable objUserProfileTable,
out string objUserProfileQueueltem,
out Mail message,
IBinder binder,

[206]

Chapter 7

out SMSMessage objsmsmessage

)

var inputs = reqg.Content.ReadAsStringAsync () .Result;

dynamic inputJson = JsonConvert.DeserializeObject<dynamic>
(inputs) ;

objUserProfileQueueltem = inputJson.ProfilePicUrl;

string firstname= inputJson.firstname;

string lastname=inputJson.lastname;

string email = inputJson.email;

string profilePicUrl = inputJson.ProfilePicUrl;

UserProfile objUserProfile = new UserProfile(firstname,
lastname,profilePicUrl, email);

TableOperation objTblOperationInsert = TableOperation.Insert
(objUserProfile);

TableResult objTableResult = objUserProfileTable.Execute
(objTblOperationInsert) ;

UserProfile objInsertedUser = (UserProfile)
objTableResult.Result;

string strFromEmailAddress = "donotreplylexample.com";
string strSubject = "New User got registered successfully.";
string emailContent = "Thank you " + firstname + " " +
lastname +" for your registration.

" +
"Below are the details that you have provided us

"+
"First name: " + firstname + "
" +
"Last name: " + lastname + "
" +
"<pb>Email Address: " + email + "
" +
"<p>Profile Url: " + profilePicUrl + "

" +
"Best Regards," + "
" + "Website Team";
string strAttachmentName = firstname + "_" + lastname +
".log";

message = Helper.SendMail (strSubject,emailContent,
strFromEmailAddress, email, strAttachmentName) ;

using (var emaillLogBloboutput = binder.Bind<TextWriter> (new
BlobAttribute ($"userregistrationemaillogs/
{objInsertedUser.RowKey}.log")))
{
emaillogBloboutput.WritelLine (emailContent) ;
}
objsmsmessage = new SMSMessage () ;
objsmsmessage.Body = "Hello.. Thank you for getting
registered.";
}
public class UserProfile : TableEntity
{

[207]

Code Reusability and Refactoring the Code in Azure Functions

public UserProfile(string firstname, string lastname, string
profilePicUrl, string email)
{
this.PartitionKey = "pl1";
this.RowKey = Guid.NewGuid() .ToString();;
this.FirstName = firstname;
this.LastName = lastname;
this.ProfilePicUrl = profilePicUrl;
this.Email = email;
}
public UserProfile() { }
public string FirstName { get; set; }
public string LastName { get; set; }
public string ProfilePicUrl {get; set;}
public string Email { get; set; }

How it works...

To create shared code and classes, we have taken a ManualTrigger - C# template and
created a new . csx file for our classes (in this case, Helper). Once the C# script (. csx) files
are ready, we can write the common code in those files based on our requirements.

After the shared classes are developed, we can use them in any of the Azure Functions
within the function app where these shared classes are located.

To consume the shared classes, we just need to use the #1oad directive to refer to the shared
classes using the relative path. In this case, we have used the #1oad
"../SharedClasses/Helper.csx" directive to refer to the classes located in the
Helper.csx file located in the SharedClasses folder.

There's more...

One of the limitations of these shared classes is that you cannot use the Helper class in
other Azure Function apps. We will look at how to overcome this limitation in a moment
using the class libraries in Visual Studio.

All the changes that you make to these shared classes should be reflected in the caller
functions automatically. If, by any chance, if you don't see these changes reflected in the
caller functions, navigate to the host . json file using App Service Editor. Typically, this
would happen if your script files are located in other directories.

[208]

Chapter 7

DEVELOPMENT TOOLS

BNl Console

K Advanced tools (Kudu)

Frfypp Service Editor

=) Resource Explorer

Navigate to the App Service Editor, which is available in Platform features under the
DEVELOPMENT TOOLS sections, as shown in the following screenshot:

Add the WatchDirectories attribute to the host . json file, as shown in the following
screenshot:

EXPLORE
4 WORKING FLES
host.json
4 WWWROOT
CreateProfilePictures
CropProfilePictures
ProcessISONFileFromOneDrive
RegisterUser
4 SavelsonToSqLAzureDatabase
function,json
FUN.Csx%
SharedClasses

WalidateTwitterFallowerCount

i

hostjson

1H

ER|

2 "watchDirectories™:

["Sharedclasses™]

See also

e The Shared code across Azure Functions using class libraries recipe

[209]

Code Reusability and Refactoring the Code in Azure Functions

Shared code across Azure Functions using
class libraries

You learned how to reuse a Helper method within the Azure Function app. However, you
cannot reuse the across other function apps or any other type of application such as Web
app, WPF Application, and so on. In this recipe, we will develop and create a new .d11 file
and you will learn how to use the classes and its methods in the Azure Functions.

How to do it...

1. Create a new Class Library application using Visual Studio. I have used Visual
Studio 2017, as shown in the following screenshot:

MNew Project ? *
b Recent .NET Framework 46.2 ~ Sortby: Default - Search Installed Templates (Ctrl+E) P~
4 |nstalled cw i X X
I-J WPF App (NET Framework) Visual C# Type: Visual C#
-
4 Templates - A project for creating a C# class library
C# .
4 Visual C= Windows Forms App (.MET Framework] WVisual C= (il
Windnws Lniversa
- . C
Windows Classic Desktop Console App (NET Framework) Visual C#
Web
, CH
b Office/SharePoint | 9‘5! Class Library (.MET Framework) Visual C2
WNET Core .
c#
MNET Standard ."J Shared Project Visual C#
Android =
cx
Cloud] Windows Service (NET Framework) Visual C#
Cross-Platform
<ibility c#
. .E(;ct;n_\b\ht-, KJ Empty Project (MET Framework) Wisual C#
i
Test 2w hoo [i 3
- WPF Browser App (NET Framework) Visual C2
b tv0S)
- o
b Online ‘H.!! 'WPF Custarn Control Library (.MET Framework) Wisual C# -
 p—!
Name: |[Utilities | |
Location: ChCookbook\Chapter/\Recipe2\SharedCode', i
Solution: Create new solution -
Solution name: Utilities Create directory for solution
[] Add te Source Control

2. Create a new class named EMailFormatter and paste the following code in the
new class file:

namespace Utilities

{

[210]

Chapter 7

public static class EMailFormatter
{
public static string FrameBodyContent (string firstname,
string lastname, string email, string profilePicUrl)
{
string strBody = "Thank you " + firstname + " " +
lastname + " for your registration.

" +
"Below are the details that you have provided us

" + "First name: " + firstname + "
" +
"<pb>Last name: " + lastname + "
" + "Email
Address: " + email + "
" + "Profile Url:
 " + profilePicUrl + "

" + "Best
Regards," + "
" + "Website Team";
return strBody;

}

3. Change Build Configuration to Release and build the application to create the
.d11 file, which will be used in our Azure Functions.

4. Navigate to App Service Editor of the function app and create a new bin folder,
by right-clicking in the empty area below the files located in WWWROOT, as
shown in the following screenshot:

EXPLORE

4 WORKING FLES
hostjson

4 WWWROOT
CreateProfilePictures
CropProfilePictures
Process]SOMFileFromOneDrive
RegisterUser
Save)sonToSQLAzureDatabase
SharedClasses
ValidateTwitterFollowerCount

host.json

Mewy File

Mewr Falder

Upload Files

Find in Folder

[211]

Code Reusability and Refactoring the Code in Azure Functions

5. After clicking on the New Folder item in the preceding screenshot, a new textbox
will appear. Provide the name as bin, as shown in the following screenshot:

EXPLCRE
4 WORKIMNG FLES

hostjsan

WWWROOT
bin|

6. After creating the bin folder, right-click on the bin folder, as shown in the
following screenshot, and select Upload Files options to upload the .d11 file
that we have created in Visual Studio:

4 WWWROOT

hin
Mews File
Cre

cre Mews Folder

Prid Upload Files

Ret
5av Findin Folder

7. This is how it looks after we upload the .d11 file to the bin folder:

4 WORKIMG FLES

hostjson

4 WWIROOT

Utilities.dll

CreateProfilePictures

[212]

Chapter 7

8. Navigate to the Azure Function where you would like to use the shared method.
Let's navigate to the RegisterUser function and make the following changes:
1. Add a new #r directive, shown as follows, to the run. csx method of
the RegisterUser Azure Function. Note that . d11 is required in this
case:

#r "../bin/Utilities.dll"

2. Add a new namespace, shown as follows:
using Utilities;

9. We are now ready to use the FrameBodyContent shared method in our Azure
Function. Now replace the existing code that frames the email body content with
the following code:

string emailContent = EMailFormatter.FrameBodyContent (
firstname, lastname,email, profilePicUrl);

How it works...

1. We have created a .d11 file that contains the reusable code that can be used in
any of the Azure Functions that require the functionality available in the .d11
file.

2. Once the .d11 file is ready, we create a bin folder in the function app and add
the .d11 file to the bin folder.

Note that we have added the bin folder to the WWWROOT so that it is
available to all the Azure Functions available in the function app.

There's more...

Just in case you would like to use the shared code only in one function, then you need to
add the bin folder along with the . dd1 file in the required Azure Function folder.

[213]

Code Reusability and Refactoring the Code in Azure Functions

Another major advantage of using class libraries it that it would improve
0 performance as they are already compiled and ready for execution.

See also

The Creating common code repository for better manageability within a function app recipe

Azure Functions and precompiled
assemblies

In all our Azure Functions that we have created so far, we have written our code in a
method named Run in the run.csx. However, there might be some scenarios where you
would like to have your own classes and functions run as a start up method hosted on the
Azure Functions. In this recipe, you will learn how to integrate your custom class and
methods as start ups.

Getting ready...

By default, all the Function apps that you create in VS 2017 are precompiled function. This
recipe is developed using VS 2015. Please make sure you install Visual Studio 2015 if you
don't have one installed already.

How to do it...

We need to follow the below steps to create and use the precompiled functions:

1. Create a class library using Visual Studio

2. Create a HTTP function and then make changes to the Function. json to
integrate the .dd1 file created in the previous step.

[214]

Chapter 7

Creating a class library using Visual Studio

1. Create a new Class Library named PrecompiledFunctions using Visual
Studio. Make sure that you choose the latest .NET version framework.

2. Create a new class named MyFunction and paste the following code in the new
class file. It's nothing new; I just copied the code that gets by default when you
create a new HTTP trigger using C# language:

using System.Net;

using System.Ling;

using System.Threading.Tasks;
using System.Net.Http;

namespace PreCompiledFunctionSample
{
public class MyFunction
{
public static async Task<HttpResponseMessage>
MyRun (HttpRequestMessage req)
{

// parse query parameter

string name = reqg.GetQueryNameValuePairs ()
.FirstOrDefault (g => string.Compare (q.Key, "name",
true) == 0) .Value;

dynamic data = await
req.Content .ReadAsAsync<object> () ;
name = name ?? data?.name;
return name == null
? reqg.CreateResponse (HttpStatusCode.BadRequest,
"Please pass a name on the query string or in the
request body") : reqg.CreateResponse
(HttpStatusCode.OK, "Hello " + name);

}
3. Run the following command in Package Manager Console:
Install-Package Microsoft.Azure.WebJobs.Extensions -Version 2.0.0
4. Run the following command in Package Manager Console:

Install-Package Microsoft.AspNet.WebApi.Client

[215]

Code Reusability and Refactoring the Code in Azure Functions

Creating a new HTTP trigger Azure Function

1. Navigate to your Azure Management portal and create an HTTP trigger Azure
Function named HttpTrigger-MyCompiled by selecting C# in the language
drop-down, as shown here:

Choose a template below or

-
lar‘guage: E E ScemriO:
L

E HTTP trigger

A function that will be run whenever it receives an HTTP
request, responding based on data in the body or query
string

Batch F# JavaScript PowerShell
Python TypeScript

2. Provide a meaningful name and configure Authorization Level to Anonymous.
3. Delete the default run.csx file.

4. Navigate to App Service Editor of the function app and go to the HttpTrigger-
MyCompiled folder, create a folder named bin, and upload the .d11 file along
with any other dependencies, if any. In this recipe, we just have the .dd1 file, as
shown in the following screenshot:

4 HttpTrigger-MyCompiled
4 hin
MyPrecompiledFunctions.dll

function.json

[216]

Chapter 7

5. Navigate to function. json in the Azure Function code editor file and replace
the default JSON with the following JSON and save it. Just in case you made
changes to your name space, class, or method names, make the changes are
according to the following function. json:

"scriptFile": "bin\MyPrecompiledFunctions.dll",
"entryPoint": "PreCompiledFunctionSample.MyFunction.MyRun",
"bindings": [

{

"authLevel": "anonymous",
"name" . "req",

"type": "httpTrigger",
"direction": "in"

"name": "Sreturn",
"type" . "http",
"direction": "out"

"disabled": false
}

6. Now, copy the function URL using the GET function URL link, which is available
just above the code editor and make a request to the HTTP trigger function using
the Postman tool:

) No Environment
https://azurefunction:

GET htps:/fazurefunctionscookbook.azurewebsites.netv/api/HupTrigger-MyCompiled?name=Praveen Sreeram Params Send b
2

Headers
Key Value Description Bulk Edir
Body (11) 1 Status: 200 OK
Pretty JSON =
1 ['Hello Praveen Sreeram”

[217]

Code Reusability and Refactoring the Code in Azure Functions

How it works...

These are the steps that we have followed in this recipe:

1. Create a class library using C# with the code that responds to HTTP requests and
send an HTTP response.

2. Create an assembly and uploaded it to the Azure Function.
3. To utilize the function named MyRun available in the assembly (.dd1), we need to
make the following changes to the Azure Function files:
1. Delete the default run. csx file.
2. Add the following to the function. json file:
e scriptFile: This indicates the location of the .dd1 file.
e entryPoint: This indicates the function name that should
be called for every HTTP request to the Azure Function.

There's more...

Even after installing the two NuGet packages mentioned previously, if you get any syntax
errors, make sure that you also create a reference to System.Web.Http as shown in the
following screenshot then click on OK button:

4 Assemblies Targeting: MET Framewark 4.6.1 Search dssemblies (Ctrl+E) P ~
Framewark Mame Wersion “ Name:
Extensions 3315 S0L Server Mohile Destination 13.0.0.0 Systern.Web, Hitp
Recent stdole 7.0.3300.0 Created by:
stdale 7.0.3300.0 Microsoft Carporation
b Projects L}) Systern.MNet.Hitp 2000 ‘;E(r)s(i)ngn:
Systern.Met. Hitp. Forrnattin 4.0.00 A
> St P sijstem.Net.Htt:WebRequegst 2000 File Version:
b COM Systern. Servicebodel Dommainserdices EntitgFr.. 4.0.00 40207100
Systern. Servicebodel Dommainserdices Hosting 4.0.00
b Browse Systern.ServicebModel DomainServices Hosting.. 4.0.0.0
Systern. Servicebodel Dommainserdices, Server 4.0.00
Systern, Spatial 5.64.0
Systern. Web.Helpers 2.0.00
¥
SysternWeb Http, SelfHost 4.0.00
Systern Web Hitp WebHost 4.0.00
Systermn.Web Muc 2000
Systermn.Web.Muc 4.0.01
Systern.Web. Razor 2000
SysternWeb \WebPages 2000
Systermn.WebMWebPages Adrministration 2000
Systern Web\WebPages Deployment 2000
SysternWeb\WebPages Razor 2000
SysternWindows Irteractivity 4.0.00
SysternWindows Irteractivity 4.5.00
WilangProj 7.0.3300.0
WilangProj 7.0.3300.0 hd
Browse... | | Ok ‘ | Cancel

[218]

Chapter 7

You should have all the following references:

F |

u-B References

& Afnalyzers

-l
[Y

Microsoft.Azure KeyWault.Core
Microsoft.Azure Meblobs
Microsoft.Azure Weblobs Extensions
Microsoft.Azure MWeblobs Host
Microsoft. CSharp
Microsoft.Data.Edm
Microsoft.Data. OData
Microsoft.Data, Services. Client
Microsoft \WWindowsAzure, Storage
MCrontab

MNewtonsoft)son

Systerm

System.Core

Systern.Data
Systern.Data.DataSetExtensions
System. Met. Http
System.Met.Http. Formatting
Systern,Spatial

System. Threading Tasks.Dataflowr
System Web,Http

System.Xml

SysternXmlLing

See also

The Migrating legacy C# application classes to Azure Functions using PowerShell recipe

[219]

Code Reusability and Refactoring the Code in Azure Functions

Migrating legacy C# application classes to
Azure Functions using PowerShell

Currently, many business applications are being hosted in private clouds or on-premise
data centers. Many of them have started migrating their applications to Azure using various
methods. The following are a just a few methods of quick migration to Azure:

e Lift and shift the legacy application to the Infrastructure as a service (IaaS)
environment: This method should be straight forward, as you have complete
control over the virtual machines that you would create. You could host all your
web applications, schedulers, databases, and so on without making any changes
to your application code. You can even install any third-party software's or
libraries. Though this option provides full control for your application, it would
be expensive in most of the cases as the background application might not be
running all the time.

o Convert legacy applications to Platform as a service (PaaS)-compatible
environment: This method could be complex depending on how many
dependencies your applications have in other third-party libraries that are not
compatible with the Azure PaaS environment. You would need to make code
changes to your applications so that they are stateless and are not dependent on
any of the resources of the instances where they are hosted. This option is very
cost-effective as you just need to pay for the execution time of your applications.

In order to host your applications in Azure and utilize them to fullest

possible extent, your applications shouldn't be dependent on any of the
resources of the virtual machine instances on which they would be hosted.

For example, you should use Redis Cache to store all your user session
information instead of using In-Proc sessions.

In this recipe, we will look at one of the easiest ways of migrating your existing background
job applications developed using C# classes and console applications without making many
changes to the existing application code.

We will be using a timer trigger to run the job every 5 minutes. And we will use PowerShell
to invoke the . exe process of the console application.

[220]

Chapter 7

Getting ready

The code provided in the recipe works well with any of the previous versions of the Visual
Studio. I have used Visual Studio 2017 .

How to do it...

We will perform this recipe using the following steps:

Creating an application using Visual Studio

1. Create a new console application and name it BackgroundJob using Visual
Studio. Make sure that you choose the latest .NET version framework.
2. Create a new class called UserRegistration and replace the following code:

using System;
namespace BackgroundJob
{
class UserRegistration
{
public static void RegisterUser ()
{
Console.WriteLine ("Register User method of
UserRegistration has been called.");

}

3. Create a new class called OrderProcessing and replace the following code:

using System;
namespace BackgroundJob
{
class OrderProcessing
{
public static void ProcessOrder ()
{
Console.WritelLine ("Process Order method of
OrderProcessing class has been called");

[221]

Code Reusability and Refactoring the Code in Azure Functions

4. In the Program. cs file, replace the existing code with the following code:

using System;
namespace BackgroundJob
{
class Program
{
static void Main(string[] args)
{
Console.WritelLine ("Main method execution has been
started");
Console.WriteLine
" ")
UserRegistration.RegisterUser () ;
OrderProcessing.ProcessOrder () ;
Console.WriteLine
" ")
Console.WriteLine ("Main method execution has been
completed");
t

}

5. Build the application to create the . exe file. You can configure it to run in either
debug or release mode. It is recommended that you deploy . exe in the release
mode in your production environments.

Creating a new PowerShell Azure Function

1. Navigate to your Azure Management portal and create a TimerTrigger -
PowerShell Azure Function by selecting PowerShell in the Language dropdown,
as shown in the following screenshot:

[222]

Chapter 7

Choose a template below or

HTTP trigger @ Timer trigger

A function that will be run whenever it receives an HTTP A function that will be run on a specified schedule
request, responding based on data in the body or query
string

Batch C# F# JavaScript PowerShell
Python TypeScript C# F# JavaScript TypeScript

2. Provide a meaningful name and configure the function to run every 5 minutes by
setting the frequency in the Schedule field, as shown in the following screenshot:

Timer trigger
New Function

PowerShell v

Name:

Backgroundlob

Timer trigger

S le @

Eri= b B
05

[223]

Code Reusability and Refactoring the Code in Azure Functions

3. Navigate to App Service Editor of the function app and go to the
BackgrounddJob folder, create a folder named bin, and upload the . exe file
along with any other dependencies if any. In this recipe, we have just the .exe
file, as shown in the following screenshot:

4 WWWROOT
4 Backgroundlob

4 hin

Backgroundlob.exe

function.json

run.psi

4. Once you have uploaded the . exe file, you can also view it in the View Files
section of the Azure Function, as shown in the following screenshot. You can
view the .exe file by clicking on the bin folder icon:

Wiew files Test

+ Add TUpload 1 Delete

= Backgroundlob

I hin

[jfunction,jsan

[run.ps1

5. Navigate to the run.ps1 file and replace the default code with the following
code and save it:

& "D:homesitewwwrootBackgroundJobbinBackgroundJob.exe"

[224]

Chapter 7

6. Click on the Run button to run a test to check whether it's working as expected.
In my case, clicking on the Run button has created the following log, which is
expected:

2@17-87-86T11:35: 82, @61 Function started (Id=6b29bdef-145a-400c-bdcd-19429248F458c)
2@17-87-26T11:35:@3.156 Main method execution has been started

2017-@7-@6T11:35:@3.156 ======================================

2@17-@7-26T11:35:@3.156 Register User method of UserRegistration has been called.
2@17-87-86T11:35:@3.156 Process Order method of OrderProcessing class has been called
2017-@7-@6T11:35:@3.156 ======================================

2@17-87-@6T11:35:@3.156 Main method execution has been completed

2@017-07-@6T11:35:@3.171 Function completed (Success, Id=6b20bdef-145a-4@8c-bdcd-19429945F4

4

How it works...

In this recipe, we have created a simple application that has a single function in each of the
two classes that just print the message when it is called. Once the development of the
classes is complete, you can learn how to create a new Azure Function and integrate it with
the . exe file. In your real-work cases, you can also upload your . exe files along with any
other libraries to the Azure Function app folder and use them for your needs.

See also

e The Azure Functions and precompiled assemblies recipe
o The Shared code across Azure Functions using class libraries recipe

Using strongly typed classes in Azure
Functions

In our initial chapters, we developed an HTTP trigger named RegisterUser that acts as a
Web API that could be consumed by any application that's capable of making HTTP
requests. However, there might be some other requirements where you might have
different applications that create messages in a queue with the details required for creating
a user. For the sake of simplicity, we will be using Azure Storage Explorer to create a queue
message.

[225]

Code Reusability and Refactoring the Code in Azure Functions

In this recipe, we will look at how to get the details of the user from the queue using
strongly typed objects.

Getting ready

Before moving further perform the following steps:

1. Create a storage account named azurefunctionscookbook in your Azure
subscription.

2. Install Microsoft Azure Storage Explorer if you haven't installed it already.

3. Once storage explorer is created, connect to your Azure storage account.

How to do it...

1. Using the Azure Storage Explorer, create a queue named registeruserqueue in
the storage account named azurefunctionscookbook. We assume that all the
other applications would be creating messages in the registeruserqueue
queue.

2. Navigate to Azure Functions and create a new Azure Function using
QueueTrigger - C# and choose the queue that we have created, as shown in the
following screenshot:

Choose a template below or

Queue trigger

A function that will be run whenever a message is added to
a spedified Azure Storage queue

Bash Batch F# JavaScript PHP
PowerShell Python TypeScript

[226]

Chapter 7

3. As shown in the following screenshot, provide the details of the Queue and click
on the Create button:

CQueue trigger

New Function

Name

QueueTngger-StronglyTypedObjects

Azure Queue Storage trigger

4. Replace the default code with the following code:

using System;
public static void Run (User myQueueltem, TraceWriter log)

{
log.Info ($S"A Message has been created for a new User");
log.Info ($"First name: {myQueueltem.firstname}");
log.Info($"Last name: {myQueueltem.lastname}");
log.Info($"email: {myQueueltem.email}");
log.Info($"Profile Pic Url: {myQueueltem.ProfilePicUrl}");

}

public class User

{

public string firstname { get;set;}

[227]

Code Reusability and Refactoring the Code in Azure Functions

public string lastname { get;set;}
public string email { get;set;}
public string ProfilePicUrl { get;set;}

5. Navigate to Azure Storage Explorer and create a new message in
registeruserqueue, as shown in the following screenshot:

Add Message

Message text:

{

“firstnarme": "Praveenp”,

"lasthame™ "Sreeram”,

"ermail""prawin2k@gmail.corm”,
PProfilePicUn":"hittps:/fupload aikimedia.org fwikipedia‘commons/thurmb,/1/1
O/Bill_Gates_June_2015,jpg /2 20p-Bill_Gates_lune_2015,jpg"

i

Expires in: %

7 Days

#| Encode message body in Base6d

Cancel

Click on OK to create the queue message and navigate back to the Azure Function
and look at the logs, as shown in the following screenshot:

Logs

2017 -27 -28T@9:
2017 -27-28T@9:
2017-@7 -88T@9:
2917 -@7 -28T@9:
2017 -27 -28TR9;
2017-@7 -88T@9:
2917 -27 -28T@9:

@8:13.
28:13.
@8:13.
@8:13.
28:13.
@8:13.
28:13.

BAE
884
&84
884
a8d
&84
884

I Pause & Clear [CCaopylogs A Collapse W

Function started (Id=95e3dcdy-fdee-4127-a8bf-43b798dAc335)
A Message has been created for a new User

First name: Prawveen

Last name: Sreeram

enail: prawin2k@gmail.com

FProfile Pic Url: https:/supload.wikimedia.orgs/wikipediascommons sthumbi1s19/6111 Gates_June_2@15.ipgs22@px-B1il)
FURCTION CONMPLeTer L oUCeess, LaoUS e TaE e L I/ oo ET B OB aUE oo, UUFStIoR=Lone T

[228]

Chapter 7

How it works...

We have developed a new Azure queue function that gets triggered when a new message
gets added to the queue. We have created a new queue message with all the details
required to create the user. You can further reuse the Azure Function code to pass the user
object (in this case, myQueueItem) to the database layer class that is capable of inserting the
data into database or any other persistent medium.

There's more...

In this recipe, the type of the queue message parameter that is accepted by the Run method
is User. The Azure Function runtime will take care of serializing the JSON message
available in the queue to the custom type, User in our case. If you would like to reuse the
User class, you can create a new user. csx file and refer to the class in any other Azure
Function using the #1oad directive.

See also

e The Creating a common code repository for better manageability within a function app
recipe

[229]

Developing Reliable and
Durable Serverless Applications
Using Durable Functions

In this chapter, you will learn the following:

¢ Configuring Durable Functions in the Azure Management portal

¢ Creating a hello world Durable Function app

¢ Testing and troubleshooting Durable Functions

¢ Implementing multithreaded reliable applications using Durable Functions

Please note that the Durable Functions runtime is still in Preview. Microsoft Azure Function
team is working on providing more features. In case you face any issues, please feel free to
report the issue here: https://github.com/Azure/azure-webjobs-sdk-script/issues/.

Introduction

When you are working on developing modern applications that need to be hosted on the
cloud, you need to make sure that the applications are stateless. Statelessness is an essential
factor for developing the cloud-aware applications. For example, you should avoid
persisting any data in the resource that is specific to any virtual machine (VM) instance
which is provisioned to any Azure Service (for example: App Service, API and so on). If you
do so, you cannot leverage few of the services such as the auto scaling functionality as the
provisioning of instances is dynamic. If you depend on any VM specific resources, you will
end up facing troubles with unexpected behaviors.

https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/

Developing Reliable and Durable Serverless Applications Using Durable
Functions

Having said that, the downside of the previously mentioned approach is that you end up
working on identifying ways of persisting data in different mediums depending on your
application architecture.

Azure has come up with a new way of handing statefulness in serverless architecture along
with other features such as durability and reliability in the form of Durable Functions.
Durable Functions is an extension to Azure Functions and it is in the very early stages of
development. By the time you will be reading this, there might be a lot of changes released
to the Durable Functions. Please do keep checking the official documentation available

at https://docs.microsoft.com/en-us/azure/azure—functions/durable-functions-—

overview.

Configuring Durable Functions in the Azure
Management portal

Currently, there are no predefined templates available for creating Durable Functions.
Hopefully by the time you are reading this chapter, the Azure Management portal will have
the ability to create Durable Functions using the default function templates. If you find any
template on the portal for creating the Durable Functions, please feel free to skip this recipe.

Getting ready

Create a new function app named MyDurableFunction.

How to do it...

1. Once you create the Function app, please navigate to Application settings by
clicking on the Application settings link of the function app shown as follows:

[232]

https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview

Chapter 8

Application settings

AzureWebJlobsDashboard DefaultEndpointsProtocol=

AzureWebJobsStorage DefaultEndpointsProtocol=
FUNCTIONS_EXTENSION_VERSION beta

WEBSITE_ CONTENTAZUREFILECONNECTI... DefaultEndpointsProtocol=
WEBSITE_CONTENTSHARE mydurablefunction937e

WEBSITE_NODE_DEFAULT_VERSION 6.5.0

2. Once you change the version to beta, you can see the option of creating the
Durable Functions in the Scenario: drop down as shown in the following
screenshot:

Scenario: | Durable Functions
e |
Core
APl & Webhooks

Data Processing

Samples

| Durable Functions
MICrosoTt i:nr'apn
All

3. Create a new Durable Functions HTTP starter function by choosing Durable
Functions in the Scenario: dropdown as shown in the following screenshot:

[233]

Developing Reliable and Durable Serverless Applications Using Durable
Functions

Choose a template below or

(’) Durable Functions HTTP starter

A function that will trigger whenever it receives an HTTP
request to execute an orchestrator function.

4. Clicking on the C# button in the preceding step, a new tab will be opened as
shown in the following screenshot:

Durable Functions HTTP starter

Extensions not
Installed

This template requires the following

extensions.

A
Microsoft.Azure. Weblobs.Extensions. DurableTask

Install

[234]

Chapter 8

5. Click on the Install button of the preceding step to start installing the
DurableTask extensions. It would take around 10 minutes to install the
dependencies as shown in the following screenshot:

Durable Functions HTTP starter

Extensions not
Installed

o Installing template dependencies, you
will be able to create a function once this
done. Dependency installation happens in
the background and can take up to 10
minutes. You can continue to use the
portal during this time.

There's more...

e Currently, the function template support for Durable Functions is in
Beta/Preview. So we have configured the Framework version as beta in the
Application Settings. Microsoft Azure team might come up with the required
templates for Durable Functions very soon.

e Durable Functions is still in the Preview stage and it is not recommended to be
used in your production environment.

e Currently, C# is the only language supported for developing the Durable
Functions.

[235]

Developing Reliable and Durable Serverless Applications Using Durable
Functions

See also

e The Creating a hello world Durable Function app recipe
o The Configuring Durable Functions in the Azure Management portal recipe
e The Testing and troubleshooting Durable Functions recipe

Creating a hello world Durable Function app

Though the overall intention of this book is to have each recipe of every chapter solve at
least one business problem, this recipe however, doesn't solve any real-time domain
problems, but it provides a quick start guidance to the readers to understand more about
Durable Functions and its components along with the approach of developing Durable
Functions.

Getting ready

We will perform the following steps before moving ahead:

e Please install Postman tool from https://www.getpostman.com/ if you haven't
installed it yet.

¢ Please read more about Orchestrator and Activity trigger bindings at https://
docs.microsoft.com/en-us/azure/azure-functions/durable-functions-

bindings

How to do it...

In order to develop Durable Functions, we need to create the following three functions:

¢ Orchestrator client: An Azure Function that can manage the Orchestrator
instances

¢ Orchestrator function: The actual Orchestrator function allows the development
stateful workflows via code and can asynchronously call other Azure Functions
(which are called as Activity functions) and can even save the return values of
those functions into local variables

e Activity functions: These are the functions which will be called by the
Orchestrator functions

[236]

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings

Chapter 8

Creating HttpStart Function - the Orchestrator client

1. Create a new Durable Functions HTTP starter function by choosing Durable
Functions in the Scenario dropdown as shown in teh following screenshot:

Choose a template below or

<;> Durable Functions HTTP starter

A function that will trigger whenever it receives an HTTP
request to execute an orchestrator function.

2. Clicking on the C# link in the preceding screenshot opens a new tab shown as
follows. Let's create a new HTTP function named HttpStart in
the DurableFunctionApp function app:

Durable Functions HTTP starter

New Function

Name

HttpStart

[237]

Developing Reliable and Durable Serverless Applications Using Durable
Functions

3. Immediately after creating the function, you will be taken to the code editor.
Please replace the default code with the following code and click on the Save
button to save the changes:

#r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
#r "Newtonsoft.Json"

using System.Net;

public static async Task<HttpResponseMessage> Run (

HttpRequestMessage req,

DurableOrchestrationClient starter,

string functionName,

TraceWriter log)

{
// Function input comes from the request content.
dynamic eventData = await reqg.Content.ReadAsAsync<object>();
string instanceld = await starter.StartNewAsync (functionName,
eventData) ;

log.Info($"Started orchestration with ID = '{instanceId}'.");

return starter.CreateCheckStatusResponse (req, instancelId);

}

4. Navigate to the Integrate tab and click on Advanced editor as shown in the
following screenshot:

¢ Advanced editor

Qutputs @
HTTP {%return)

= New Output

[238]

Chapter 8

5. In the Advanced editor, please check if you have following settings. If not,
replace the default code with the following code:

{

"bindings":
[

{
"authLevel": "anonymous",
"name": "req",
"type": "httpTrigger",
"direction": "in",
"route": "orchestrators/{functionName}",
"methods": [

"post",
llget n
1

}l

{
"name": "Sreturn",
"type": "http",
"direction": "out"

}l

{
"name": "starter",
"type": "orchestrationClient",
"direction": "in"

The HttpStart function works like a gateway for invoking all the

functions in the function app. Any request you make using
the https://mydurablefunction.azurewebsites.net/api/orchest
rators/{functionName} format in the URL, will be received by this
HttpStart function and it will take care of executing the Orchestrator
function based on the parameter available in the route parameter

{functionName}. All this is possible with the route attribute in the

function. json of the HttpStart function.

[239]

Developing Reliable and Durable Serverless Applications Using Durable
Functions

Creating Orchestrator function

1. Let's create an Orchestrator Function by clicking on the C# in the Durable
Functions orchestrator template shown as follows:

Choose a template below or go to the quickstart

o Language: Scenanio: | Durable Functions hd

\f, Durable Functions HTTP starter \’, Durable Functions activity

A function that will trigger whenever it receives an HTTP A function that will be run whenever an Activity is called by
request to execute an orchestrator function. an orchestrator function.

\f, Durable Functions orchestrator

An orchestrator function that invokes activity functions in a
Sequence

2. Once you click on C# in the preceding step, you will be taken to the following tab
where you provide the name of the function. Once you provide the name, click
on Create button to create the Orchestrator function:

[240]

Chapter 8

&l Durable Functions orchestrator

New Function

Mame:

Durdl:lleFuncManagE-d

| o

3. In the DurableFuncManager, replace the default code with the following code
and click on the Save button to save the changes:

#r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
public static async Task<List<string>>
Run (DurableOrchestrationContext context)

{

var outputs = new List<string>();
outputs.Add (await context.CallActivityAsync<string>
("ConveyGreeting", "Welcome Cookbook Readers"));

return outputs;

}

4. In the Advanced editor of the Integrate tab, replace the default code with the
following code:

{
"bindings": [
{
"name": "context",
"type": "orchestrationTrigger",
"direction": "in"

[241]

Developing Reliable and Durable Serverless Applications Using Durable
Functions

Creating Activity function

1. Create a new function named ConveyGreeting using the Durable Functions
activity template shown as follows:

\f/ Durable Functions activity

A function that will be run whenever an Activity is called by
an orchestrator function.

2. Replace the default code with the following code if it's not matching and click on
the Save button to save the changes:

#r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
public static string Run(string name)
{

return $"Hello {name}!";

}

3. In the Advanced editor of the Integrate tab, replace the default code with the
following code if it's not matching:

{

"bindings": [

{
"name": "name",
"type": "activityTrigger",
"direction": "in"

}

In this recipe, we have created an Orchestration client, an Orchestrator function, and
Activity function. We will learn how to test these in our next recipe.

[242]

Chapter 8

How it works...

Let us take a look at the working of the recipe:

o We first developed the Orchestrator client (in our case it is Ht tpStart) which is
capable of creating the Orchestrators using the startNewAsync function of
the DurableOrchestrationClient class. This method creates a new
Orchestrator instance.
¢ Secondly, we developed the Orchestrator Function which is the most crucial
piece of the Durable Functions. Following are few of the important core features
of the Orchestrator context:
e [t can invoke multiple Activity functions
e It can save the output returned by an Activity function (say
ActFunl) and pass it to another Activity function (say ActFun2)
¢ These Orchestrator functions are also capable of creating
checkpoints which saves the execution points so that in case if there
is any problem with the VMs then it can replace/resume
automatically

¢ And lastly, we developed the Activity function where we write most of the
business logic. In our case, it's just returning a simple message.

There's more...

e Currently, C# is the only language supported for developing the Durable
Functions.

¢ Durable Functions is dependent on Durable Task framework. You can learn more
about the Durable Task Framework at https://github.com/Azure/durabletask

See also

e The Configuring Durable Functions in the Azure Management portal recipe
e The Testing and troubleshooting Durable Functions recipe
o The Implementing multithreaded reliable application using Durable Functions recipe

[243]

https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask

Developing Reliable and Durable Serverless Applications Using Durable
Functions

Testing and troubleshooting Durable
Functions

In all our previous chapters, we have discussed various ways of testing the Azure
Functions. We can test the Durable Functions with the same set of tools. However the
testing approach is entirely different because of its features and the way it works.

In this recipe, we will learn few of the essential things that one should be aware of while
working with Durable Functions.

Getting ready

Please install the following if you haven't installed them yet:

e Postman tool from https://www.getpostman.com/
e Azure Storage Explorer from http://storageexplorer.com

How to do it...

1. Navigate to the code editor of the HttpStart function and grab the URL by
clicking on the </>Get function URL and replace the { functionName} template
value with DurableFuncManager.

2. Let's make a POST request using Postman as shown in the following screenshot:

I POST I I hrps:/fmydura :Jlef_n'ctim.a:.lre'.«-e::s'.es.'1e:.-'a|:ir':J|':'1e5:’a'.ors-‘D_|r5:Jle:ur-:‘v'lanagerI Params

3. Once you click on the Send button you will get a response with the following;:
e Instance ID

e URL for retrieving the status of the function
e URL to send an event to the function
e URL to terminate the request

[244]

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/

Chapter 8

Pretty JSON >

1~

2 LEF LT TP P Ty = , I =

3 "statusQueryGetUri "https://mydurablefunction.azurewebsites.net/admin/extensions/DurableTaskConfiguration/instances
I'F3c4c4650bdc4 g u ?taskHub=l DurableFunctionsHub&connection Storage"”,

4 sendcven ps://mydurableTuUnction . aZUreWeDs1tes . ne min/ extensions,/Durablelaskiont Lguration; Instances
ff3c4c4650bdc4l°bad.!“.‘_n., LRI .-"r'alseE.fent’{eaentName}'—‘taskHub DurableFunctionsHub&connection=5torage”,

5 "terminatePostUri”: "https://mydurablefunction.azurewebsites.net/admin/extensions/DurableTaskConfiguration/instances

| ff3c4c4650bdc419b|._.__l. ¢l wow, terminate ?reason={text }&taskHub=DurableFunctionsHub&connection=5Storage"
6}

4. Click on the statusQueryGetURi in the preceding step to view the status of the
function. Clicking on the link in the preceding step will open it in a new tab
within the Postman tool. Once the new tab is opened, click on the Send button to

get the actual output:

>
"createdTime":

=K
"runtimsStatus”
"input”: null,
< "output”: [

"Hello Welcome Cookbook Readers!™

"lastUpdatedTime":

"Completed”,

"2817-88-18T04:43: 157",
"2917-B3-18T84:43: 332"

5. If everything goes well (as in my case) we can see the runtimeStatus as
Completed as shown in the preceding screenshot within the postman, you will
also get eight records in the Table storage where the execution history is stored as
shown in the following screenshot:

OrchestratorStarted

ExecutionStarted
TaskScheduled
OrchestratorCompleted
Orchestratorstarted
TaskCompleted

ExecutionCompleted

OrchestratorCompleted

adbecddabeddiz Faba

ad2becddabedd5? Fabaeae 142908021
ad2becddabedd5? Fabaeas 142908021
adifecddabedd s Tabaeas 142908021
ad2becddabedd5? Fabaeae 142908021
ad2becddabedd5? Fabaeae 142908021
adbecddabeddi? Tabaeae 142908021
ad2becddabeddi? Tabaeas 142908021

[245]

Developing Reliable and Durable Serverless Applications Using Durable
Functions

6. If something has gone wrong, you can see the error message in the result column
which tells you in which function the error has occurred, and then you need to
navigate to the Monitor tab of that function to see a detailed error of the same.

See also

e The Creating a hello world Durable Function app recipe
o The Configuring Durable Functions in the Azure Management portal recipe
e The Implementing multithreaded reliable application using Durable Functions recipe

Implementing multithreaded reliable
applications using Durable Functions

I have worked in few of the applications where parallel execution is required to perform
some computing tasks. The main advantage of this approach is that you get the desired
output pretty quickly depending on the subthreads that you create. It could be achieved in
multiple ways using different technologies. However the challenge in these approaches is
that if something goes wrong in the middle of any of the subthread it's not easy to self-heal
and resume from where it was stopped. I'm sure many of you might have faced similar
problems in your application as it is a very common business case.

In this recipe, we will try to implement a simple way of executing a function in parallel with
multiple instances using the Durable Functions for the following scenario.

Assume that we have five customers (whose IDs are 1,2,3,4,5) who approached us to
generate huge number of barcodes (say around 50 thousand). It would take lot of time for
generating the barcodes as it would involve some image processing tasks. So one simple
way to quickly process the request is to use asynchronous programming by creating a
thread for each of the customer and executing the logic in parallel for each of them.

We will also simulate a simple use case to understand how the Durable Functions auto-heal
when the VM in which it is hosted would go down or restart.

[246]

Chapter 8

Getting ready

Please install the following if you haven't installed them yet:

e Postman tool from https://www.getpostman.com/

e Azure Storage Explorer from http://storageexplorer.com/

How to do it...

In this recipe, we will create the following Azure Function triggers:

e One Orchestrator function named GenerateBARCode

e Two Activity trigger functions:

e GetAllCustomers: This function just returns the array of
customer IDs. In your application, you would need to write your
business logic.

® CreateBARCodeImagesPerCustomer: This function doesn't
actually create the barcode, however it just logs a message to the
console as our goal is to understand the features of Durable
Functions. For each customer, we will randomly generate a number
less than 50,000 and just iterate through it.

Creating Orchestrator function

1. Create a new Function named GenerateBARCode using the Durable Functions
Orchestrator template, replace the default code with the following code and click
on the Save button to save the changes:

#r

"Microsoft.Azure.WebJobs.Extensions.DurableTask"

public static async Task<int> Run (DurableOrchestrationContext
context)

{

int[] customers = await
context.CallActivityAsync<int[]> ("GetAllCustomers");

var tasks = new Task<int>[customers.Length];
for (int nCustomerIndex = 0; nCustomerIndex <
customers.Length; nCustomerIndex++)

{

tasks [nCustomerIndex] =

[247]

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/

Developing Reliable and Durable Serverless Applications Using Durable
Functions

context.CallActivityAsync<int>
("CreateBARCodeImagesPerCustomer",
customers [nCustomerIndex]) ;

}

await Task.WhenAll (tasks);

int nTotalItems = tasks.Sum(item => item.Result);
return nTotalltems;

}

2. In the Advanced editor of the Integrate tab, replace the default code with the
following code:

{

"bindings": [

{
"name": "context",
"type": "orchestrationTrigger",
"direction": "in"

}
1,
"disabled": false

Creating Activity function GetAllICustomers

1. Create a new Function named GetAllCustomers using the Durable Functions
Activity template, replace the default code with the following code and click on
the Save button to save the changes:

#r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
public static int[] Run(string name)
{

int[] customers = new int[]{1,2,3,4,5};

return customers;

[248]

Chapter 8

2. In the Advanced editor of the Integrate tab, replace the default code with the
following code:

{

"bindings": [

{
"name": "name",
"type": "activityTrigger",
"direction": "in"

}
1,
"disabled": false

Creating Activity function
CreateBARCodelmagesPerCustomer

1. Create a new Function named CreateBARCodeImagesPerCustomer using the

Durable Functions Activity template, replace the default code with the following
code and click on the Save button to save the changes:

#r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
#r "Microsoft.WindowsAzure.Storage"
using Microsoft.WindowsAzure.Storage.Blob;

public static async Task<int> Run (DurableActivityContext
customerContext, TraceWriter log)
{
int ncustomerId = Convert.ToInt32

(customerContext.GetInput<string>());

Random objRandom = new Random (Guid.NewGuid () .GetHashCode());
int nRandomValue = objRandom.Next (50000) ;

for (int nProcessIndex = 0;nProcessIndex<=nRandomValue;
nProcessIndex++)

{
log.Info($" running for {nProcessIndex}");
}

return nRandomValue;

[249]

Developing Reliable and Durable Serverless Applications Using Durable
Functions

2. In the Advanced editor of the Integrate tab, replace the default code with the
following code:

{

"bindings": [

{
"name": "customerContext",
"type": "activityTrigger",
"direction": "in"

}

3. Let's run the function using Postman. We will be stopping the App Service (to
simulate a restart of the VM where the function would be running and see how
the Durable Function resumes from where it was paused).

4. Make a POST request using Postman as shown in the following screenshot:

Ne Environment

p:—‘rar‘ns

https://mydurablefun

POST httpsi/fmydurablefunction.azurewebsites.net/api/orchestratory/GenerateBARCode

5. Once you click on the Send button, you will get a response with the status URL.
Click on the statusQueryGetURi to view the status of the Function. Clicking on
the statusQueryGetURi link will open it in a new tab within the Postman tool.
Once the new tab is opened, click on the Send button to get the progress of the
Function.

6. Please quickly open the Microsoft Storage Explorer and open the
DurableFunctionsHubHistory table shown as follows:

[250]

Chapter 8

7. Let's navigate to the Function app's Overview blade(while the function is
running) and stop the service by clicking on the Stop button as shown in the
following screenshot:

Wisual Studio Enterprise — MPMN .
Owverview
= Function Apps
W ctop Ea T Restart
{(MyDurableFunction I -
= = Bunetiens + Status Subscri
" Running Wisual

8. The execution of the function will be stopped in the middle. Let's navigate to the
storage account in Storage explorer and open
the DurableFunctionsHubHistory table to see how much progress has been
made as shown in the following screenshot:

EventType Executionld IsPlayed _Timestamp Input Mame Orc
ey g e I
ExecutionStarted cf36ba2c05344390896fe2dcbb898189 | true 2018-01-19T16:34:46.159Z GenerateBARCode | {"Inst]
TaskScheduled cf36ba2c05344390896fe2dcbb898189 | false 2018-01-19T16:35:06.009Z GetAllCustomers
OrchestratorCompleted | cf36ba2c05344390896fe2dcbbB898189 | false 2018-01-19T16:35:06.010Z

9. After some time, in my case just after 5 mins, go back to the Overview blade and
start the Function App service. You will notice that the Durable Function will
resume from where it had stopped. We didn't write any code for this, it's an out-
of-the-box feature. Below is the screenshot of the completed function.

[251]

Developing Reliable and Durable Serverless Applications Using Durable

Functions
Exe Ti nput Name
|m-l
OrchestratorStarted cf36ba2c05344390896fe2dchb 808180 e 2018-01-19T716:34:56.005Z
TaskScheduled cf36ba2c05344390896fe2dcbb898189 | false 2018-01-19716:35:06.009Z GetAllCustomers
OrchestratorCompleted | cf36ba2c05344390896fe2dcbb898189 | false 2018-01-19T16:35:06.010Z
OrchestratorStarted cf36ba2c05344390896fe2dcbbB898189 | false 2018-01-19T16:41:51.507Z
TaskCompleted cf36ba2c05344390896fe2dcbbB898189 | true 2018-01-19T16:41:50.516Z
ExecutionStarted cf36ba2c05344390896fe2dcbb898189 | true 2018-01-19716:34:46.159Z | nul GenerateBARCode
TaskScheduled cf36ba2c05344390896fe2dcbb898189 | false 2018-01-19T16:42:23.5237 CreateBARCodelmagesPerCustomer
TaskScheduled cf36ba2c05344390896f=2dcbbB898189 | false 2018-01-19T16:42:23.5237 CreateBARCodelmagesPerCustomer
TaskScheduled cf36ba2c05344390896fe2dcbb898189 | false 2018-01-19T16:42:23.523Z CreateBARCodelmagesPerCustomer
TaskScheduled cf36ba2c05344390896fe2dcbb898189 | false 2018-01-19T16:42:23.5237 CreateBARCodelmagesPerCustomer
Clchacteatneomplatad | o F2002 2 NS3AA30000RF 0400002100 fole 201001, 107164203 5337

How it works...

Durable Function allows us to develop reliable execution of the functions which means that
even if the VMs are restarted or crashed while the function is running, it automatically
resumes back to its previous state automatically. It does so with the help of something
called as Checkpointing and Replaying, where the history of the execution is stored in the
Storage Table. You can learn more about this feature at https://azure.github.io/azure-

functions-durable-extension/articles/topics/checkpointing-and-replay.html.

There's more...

e In case if you get a 404 Not Found response when you run
the statusQueryGetURi URL, just don't worry. It would take some and
eventually work when you make a request again.

e In order to view the Execution history of your Durable Functions, please navigate
to the table named DurableFunctionsHubHistory which is located in the
Storage Account which is created while creating the Function app, you can find
the Storage Account name in the Application settings as shown in the following
screenshot:

WEBSITE_COMTEMTSHARE rrydurablefunctionBcy?

[252]

https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html

Chapter 8

See also

e The Creating a hello world Durable function app recipe
o The Configuring Durable Functions in the Azure Management portal recipe
e The Testing and troubleshooting Durable Functions recipe

[253]

Implement Best Practices for
Azure Functions

In this chapter, you will learn a few of the best practices that can be followed while working
with the Azure Functions such as:

¢ Adding multiple messages to a Queue using the IAsyncCollector function
e Implementing defensive applications using Azure Functions and Queue triggers

Handling massive ingress using Event Hub for IoT and alike scenarios

Enabling authorization for function apps

Controlling access to Azure Functions using function keys

Adding multiple messages to a Queue using
the IAsyncCollector function

In the first chapter, you learned how to create a Queue message for each request coming
from the HTTP request. Now let's assume that each user is registering their devices
(mobiles, laptops, and so on) using any client application (for example, a desktop app, a
mobile app, or any client website) that can send multiple records in a single request. In
these cases, the backend application should be smart enough to handle the load coming to
it. In these cases, there should be a mechanism to create multiple Queue message in a single
go asynchronously. You will learn how to create multiple Queue messages using the
IAsyncCollector interface.

Implement Best Practices for Azure Functions

Here is a sample diagram that depicts the data flow from different client applications to the
backend web API:

105 App
2 devices
L—) Backand Weh
Android App |————3 devices ———> API L0 Queue Messages— "‘Z”gu‘?ﬁé""ge
(HTTFTriggen)
4 devices

Website _J

In this recipe, we will simulate the requests using the Postman tool that sends the request to
the Backend Web API (HttpTrigger) that can create all the Queue messages in a single go.

Getting ready

These are the required steps:

e Create a storage account using Azure Management portal if you have not created
it yet.

e Install Microsoft Storage Explorer from http://storageexplorer.com/ if you
have not installed it yet.

[256]

http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/

Chapter 9

How to do it...

1. Create a new HTTP trigger named BulkDeviceRegistrations by setting the
Authorization Level to Anonymous.

2. Replace the default code with the following code. You might get compilation
errors. Don't worry, we will fix that in the next few steps:

using System.Net;
using Newtonsoft.Json;
public static void Run (HttpRequestMessage req, TraceWriter log,
IAsyncCollector<string>DeviceQueue)
{
var data = reqg.Content.ReadAsStringAsync () .Result;

dynamic inputJson = JsonConvert.DeserializeObject<dynamic>
(data) ;

for (int nIndex=0;nIndex<inputJson.devices.Count;nIndex++)
{
DeviceQueue.AddAsync
(Convert.ToString (inputJdson.devices
[nIndex]));

}

3. Click on the Save button and navigate to the Integrate tab and add a new Azure
Queue Storage output binding then click on Select button and provide the name
of the Queue and other parameters, as shown in the following screenshot:

Azure Queue Storage output

Message pararneter name & Queue name &
DeviceQueue dewicequeus

Use function return value

Storage account connection & showe walue

azurefunctionscookbook_STORAGE Y onew

Cancel

[257]

Implement Best Practices for Azure Functions

4. Click on the Save button to save the changes and navigate to the code editor of
the Azure Function.

5. In the code editor, click on the Viewfiles tab and add a new file named the
project.json.

6. Let's add a Newtonsoft.Json NuGet package by adding the following JSON in
the project. json file:

{
"frameworks" : {
"netdo": |
"dependencies": {
"Newtonsoft.Json" : "10.0.2"
3
3

}

7. Let's run the function from the Test tab of the portal with the following input

request JSON:
{
"devices":
[
{
"type": "laptop",
"brand":"lenovo",

"model":"T440"
by

"type": "mobile",
"brand":"Mi",
"model":"Red Mi 4"

[258]

Chapter 9

8. Click on the Run button to test the functionality. Now open the Azure Storage
Explorer and navigate to the Queue named as devicequeue. As shown in the
following figure, you should see two records:

33
Attached)

Qe Sccounts

0B0-fff-418f-bdee-18b0e5ee34ad | "type™ "laptop”, "brand™: "lenowa”, "model™ "T440" }
Sc37051f-b2dd-de7d-bheb-2bfcd TTR3E0F | { "type": "mobile”, "brand™ "Mi", "rmodel”; "Red Mid" }

[eveloprment)

EAs-Attached Services)
Furefunctionscookbook (External)
B Blob Containers

| File Shares

T Queles

M0 azure-wehjobs-blobtrigger

M azure-webjobs-blobtrigger

L -blobtrigger

[ryquele-iterns

How it works...

Create a new HTTP function that has a parameter of type IAsyncCollector<string>,
which could be used to store multiple messages in a Queue service in a single go
asynchronously. This approach of storing multiple items asynchronously will reduce lots of
load on the instances. We also added the Newtonsoft . Json NuGet package by adding the
references in the project . json file.

Finally, we ran a test on invoking Http trigger right from the Azure Management portal and
also saw the Queue messages get added using the Azure Storage Explorer.

There's more...

You can also use the ICollector interface in place of IAsyncCollector if you would like
to store multiple messages synchronously.

[259]

Implement Best Practices for Azure Functions

Implementing defensive applications using
Azure Functions and Queue triggers

For many of the applications, even after performing multiple tests of different
environments, there might still be unforeseen reasons why the application would fail.
Developers and architects cannot predict all the unexpected inputs throughout the lifespan
of the application being used by the business users or the end users. So, it's a good practice
to make sure that your application alerts you and send notifications in case of any errors or
unexpected issues with the applications.

In this recipe, you will learn how the Azure Functions help us in handling these kinds of
issues with minimal code.

Getting ready

These are the required steps:

¢ Create a storage account using Azure Management portal if you have not created
it yet.

¢ Install Microsoft storage Explorer from http://storageexplorer.com/ if you
have not installed it yet.

How to do it...

In this recipe, we will develop the following pieces of code:

1. Develop a Console Application using C# that connects to the storage account and
creates Queue messages in the Queue named myqueuemessages.

2. Create a Azure Function Queue trigger named ProcessData that gets fired
whenever a new message is being added to the Queue named
myqueuemessages.

[260]

http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/

Chapter 9

CreateQueueMessage - C# Console Application

1.

Create a new Console Application using the C# language. Make sure that you
choose the latest framework.

Create an app setting key named StorageConnectionString with your storage
account connection string.

Install the windowsAzure.Storage NuGet package using the following
command:

Install-Package Windowsazure.Storage

Add the following namespaces and a reference to the
System.Configuration.dll file:

using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Queue;
using System.Configuration;

Add the following function to your Console Application and call it from the Main
method. The CreateQueueMessages function creates 100 messages with the
index as the content of each message:

static void CreateQueueMessages ()
{

CloudStorageAccount storageAccount =
CloudStorageAccount.Parse (ConfigurationManager.AppSettings
["StorageConnectionString"]);

CloudQueueClient queueclient =
storageAccount .CreateCloudQueueClient () ;

CloudQueue queue = queueclient.GetQueueReference
("myqueuemessages") ;
queue.CreatelfNotExists () ;

CloudQueueMessage message = null;
for (int nQueueMessageIndex = 0; nQueueMessageIndex <= 100;
nQueueMessageIndex++)
{
message = new CloudQueueMessage (Convert.ToString
(nQueueMessagelIndex)) ;
queue.AddMessage (message) ;
Console.WritelLine (nQueueMessageIndex) ;

[261]

Implement Best Practices for Azure Functions

Developing the Azure Function - Queue trigger

1. Create a new Azure Function named ProcessData using the Queue trigger that
monitors the trigger named myqueuemessages. This is how the Integrate tab
should look after you create the function:

Azure Queue Storage trigger % delete

Message pararneter narne & Queue name €
ryClueueltem Py qUEMEmessages
Storage account connection [i] shioww walue

SzuretfeblobsDashboard v new

2. Replace the default code with the following code:

using System;
public static void Run(string myQueueltem,
TraceWriter log)

{
if (Convert.ToInt32 (myQueueltem)>50)
{
throw new Exception (myQueueltem) ;

}

else

{
log.Info ($"C# Queue trigger function
processed: {myQueueltem}");

}

3. The preceding Queue trigger logs a message with the content of the Queue (it's
just a numerical index) for the first 50 messages and then throws an exception for
the all the messages whose content is greater than 50.

[262]

Chapter 9

Running tests using the Console Application

1. Let's execute the Console Application by pressing Ctrl + F5, navigate to the Azure
Storage Explorer, and view the Queue contents.

2. Injust a few moments, you should start viewing messages in the
myqueuemessages Queue, as shown here. Currently, both Azure Management
portal and the Storage Explorer display the first 32 messages. You need to use the
C# storage SDK to view all the messages in the Queue.

6dd745c5-0b05-4ad8-b13f-5422ad

10dddffé-d3fb-daba-ac21-e3dddeaeads 82
Obelb1fi-41bf-dfba-a389-a1da72dcfecs 68
a0700d22-5bdc-4c62-Behb-62c5d73008F 71
11d344dd-86e0-4c12-8fb5-5f2463524e12 79
ad0cal-clab-db5a-azae-b5071933fd3b 78
f9317ebb-0b2a-478a-afb B-ff2c 2b D2 6FF a4
bdebd6db-5cd3-400b-800f-3cTdach(13e5 &80
f3353372-8d36-4800-80fe-0h157893b41b 76
0ddde5he-0c01-4658-hBbb-Foeae 030874 07
d52bccd-6587-4c40-0f10-e0fe 8000eabd
f388ddd3-150d-4a24-8671-dalcc 1835198 100
eB8a58659-0c73-4d32-0000-d#d cfc1224c 08
dfg0d7d1-e16f-dab1-aeab-Bc1dd3cTcs8e 73
9925c23a-chof-dcfo-Hed-boSciddBsdm 77

Don't get surprised if you notice that your messages in myqueuemessage
are vanishing. It's expected that as soon as a message is read successfully,
the message gets deleted from the Queue.

[263]

Implement Best Practices for Azure Functions

3. As shown here, you should also see a new Queue named myqueuemessages-
poison (<OriginalQueuename>-Poison) with the other 50 Queue messages in
it. The Azure Function runtime will automatically take care of creating a new
Queue and adding the messages that are not read properly by the Azure
Functions:

!

i ched)

p——— edfs124 cfd-afd7-292h0hedfed
- 320463 70- BE67-A01F-a01F-50 109071472 52
E Cp— Madad14-0ed1-dhea-Oebic-0cA621cd 743k 53

et o ceone o Aktinad) d¥cdfef7-37aa-4172-ab2f-2c0672edd5dd 56
P & Blob Containers edaffébb-cbb6-44f1-b22b-adbe302bbdfs 54

P~ File Shares B83c3%a0-37e1-46d8-bbaf-c FMeb500bel 55
4 [Queues

S0f3d7dd-fo0k-AF6f- 9243-0708d45d c75c 50
F5f34 eb-DcTE-4F5-bO21-E10624af 1275 61
bcie50ad-7547-4605-8dba- 332208307604 63
S6632eT3-faT-4d7f-a0al-TRA0TGA4TSCE 62
ee05ad80-Fie-4632- 962 - 6790004 34Fb 66
e7bf0a16-5208-4074-2290-cai06dbb B35k 64

. I Showing 32 of 50 rmessages in queue I

Properties

How it works...

We have created a Console Application that creates messages in the Azure Storage Queue.

And we have also developed a Queue trigger that is capable of reading the messages in the
Queue. As part of simulating an unexpected error, we are throwing an error if the value in
the Queue message content is greater than 50.

Azure Functions will take care of creating a new Queue with the name
<OriginalQueueName>-Poison and will insert all the unprocessed message in the new
Queue. Using this new poison Queue, the developers can review the content of the
messages and take necessary actions to fix the error in the applications (in this case, Queue

trigger).

The Azure Function runtime will take care of deleting the Queue message
after the Azure Function execution is completed successfully. In case of
any problem in the execution of the Azure Function, it automatically
creates a new poison Queue and adds the processed messages to the new
Queue.

[264]

Chapter 9

There's more...

Before pushing a Queue message to the poison Queue, the Azure Function runtime tries to
pick the message and process five times. You can learn how this process works by adding a
new parameter dequecount of type int to the Run method and log its value.

Handling massive ingress using Event Hub
for loT and similar scenarios

In many scenarios, you might have to handle massive amounts of incoming data, where the
incoming data might be coming from sensors and telemetry data, and it could be as simple
as the data sent from your Fitbit devices from many end users who use it continuously. In
these scenarios, we need to have a reliable solution that is capable of handling massive
amounts of data. Azure Event Hubs is one such solution that Azure provides. In this recipe,
you will learn how to integrate Event Hubs and Azure Functions.

Getting ready

Perform the following steps:

1. Create an Event Hub namespace by navigating to Internet of Things and
choosing Event Hubs.

2. Once the Event Hub namespace is created, navigate to the Overview tab and
click on the Event Hub icon to create a new Event Hub, as shown in the following
screenshot:

+ Event Hub W Delete

Essentials

Resource group (change) Connection Strings
AzureloTEventHub
Status Throughput Units
Active 1

Location

South Central US

Subscription name {change)

Subscription ID

[265]

Implement Best Practices for Azure Functions

3. By default, a Consumer Group named s$Default is created, which we will be
using in this recipe.

How to do it...

We will perform this recipe using the following steps:

¢ Creating an Azure Function Event Hub trigger
¢ Developing a Console Application that simulates IoT data

Creating an Azure Function Event Hub trigger

1. Create a new Azure Function by choosing EvenHubTrigger - C# in the template
list, as shown in the following screenshot:

Choose a template below or

L

Event Hub trigger

A function that will be run whenever an event hub receives a
new event

F# JavaScript TypeScript

[266]

Chapter 9

2. Once you select the template, you need to provide the name of the Event Hub, its
capturemessage, as shown in the following screenshot. If you don't have any
connections configured yet, you need to click on the new button:

MyEventHub

Azure Event Hubs trigger

Event Hub
connection &

Event Hub consumer group @

$Default

Event Hub name &

a:apturemessage{

[267]

Implement Best Practices for Azure Functions

3. Clicking on the new button will open a Connection popup, where you can
choose your Event Hub and other details. Choose the required details and click
on the Select button, as shown in the following screenshot:

Connection

Namespace Event Hub Policy

AzureloTEventHub capturemessage RootManageSharedAccess

4. The Name your function section should look like this after you provide all the
details. Now click on Create to create the function:

Name your function

MyEwventHub

Azure Event Hubs trigger

Event Hub name @ Event Hub connection @ show value

capturemessage AzureloTEventHub_RootManageSharedAccessKey_ ™ new

[268]

Chapter 9

Developing a Console Application that simulates loT

data

. Create a new Console Application that will send events to the Event Hub. I have

named it as Event HubApp.

. Run the following commands in the NuGet package manager to install the

required libraries to interact with the Azure Event Hubs:

Install-Package Microsoft.Azure.EventHubs
Install-Package Newtonsoft.Json

. Add the following namespaces and a reference to System.Configuration.dll:

using Microsoft.Azure.EventHubs;
using System.Configuration;

. Add the connection string in the App.config, which is used to connect the Event

Hub. This is the code for App.config. You can get the Connection String by
clicking on the ConnectionStrings link available in the Overview tab of the Event
Hub namespace:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<startup>
<supportedRuntime version="v4.0"
sku=".NETFramework,Version=v4.6.1" />
</startup>
<appSettingsé>
<add key="EventHubConnection"
value="Endpoint=sb://event hug namespace
here.servicebus.windows.net/;Entitypath=Event Hubname;
SharedAccessKeyName= RootManageSharedAccessKey;
SharedAccessKey=Key here"/>
</appSettings>
</configuration>

[269]

Implement Best Practices for Azure Functions

5. Create a new C# Class file and place the following code in the new class file:

using System;

using System.Text;

using Microsoft.Azure.EventHubs;
using System.Configuration;
using System.Threading.Tasks;

namespace EventHubApp
{
class EventHubHelper
{
static EventHubClient eventHubClient = null;
public static async Task GenerateEventHubMessages ()

{

EventHubsConnectionStringBuilder conBuilder = new
EventHubsConnectionStringBuilder
(ConfigurationManager.AppSettings
["EventHubConnection"].ToString());

eventHubClient =

EventHubClient.CreateFromConnectionString

(conBuilder.ToString());

string strMessage = string.Empty;

for (int nEventIndex = 0; nEventIndex <= 100;

nEventIndex++)

{
strMessage = Convert.ToString (nEventIndex);
await eventHubClient.SendAsync (new EventData

(Encoding.UTF8.GetBytes (strMessage)));

Console.WriteLine (strMessage) ;

}

await eventHubClient.CloseAsync();

[270]

Chapter 9

6. In your Main function, replace the following code that invokes the method that
can start sending the message:

namespace EventHubApp

{

class Program
{
static void Main(string[] args)
{
EventHubHelper.GenerateEventHubMessages () .Wait () ;

}

7. Now execute the application by pressing Ctrl + F5. You should see something
similar to what is shown here:

Bl CIMDOMS systern 32 md, exe

v key to continue .

[271]

Implement Best Practices for Azure Functions

8. While the console is printing the numbers, you can navigate to the Azure

Function to see that the Event Hub triggers gets triggered automatically and logs

the numbers that are being sent to the Event Hub, as shown in the following

screenshot:
Logs IBPauze & Clear [0 Copylogs A Co
Function Apps — ;
Z01/-05-U5 109120129206 (# EVent HUD trigger TUNCTion processed a message: 93
2017-08-98T99:20:29.206 Function completed (Success, Id=82308d614-d910-4521-acdb-355a75edaafa, Duration=0ms)
» exploredurablefunctions 2017-88-08T89:20:29.488 Function started (Id=95381453-5de@-4811-a764-acc5298e5e75)
2017-083-88T09:20:29.488 C# Event Hub trigger function processed a message: 94
exploremyapps c» 2017-08-88T@9:20:29.488 Function completed (Success, Id-95381453-5de@-4811-a764-acc5298e5e75, Duration=-@ms)
. 2017-83-88T09:20:29.769 Function started (Id=7757e213-e249-49fb-bac4-bafedbd75689)
2= Functions + 2917-@8-88T89:20:29.769 C# Event Hub trigger function processed a message: 95
2017-88-08T@9:28:29.769 Function completed (Success, Id=7757e213-e249-49fb-bac4-bafedbd75689, Duration=0ms)
b Myapp1 2017-88-88T@9:20:30.025 Function started (Id=92d3de61-d4df-4a7f-ac37-6b897a55a954)
2017-08-88709:20:30.025 C# Event Hub trigger function processed a message: 96
b f MyApp2 2017-88-88T89:20:36.825 Function completed (Success, Id=92d3de6l-d4df-4a7f-ac37-6b837a55a954, Duration=6ms)
2017-08-88T99:20:30.293 Function started (Id=744de3de-2717-4b73-9985-edb8bdfcl2a9)
I MyEventHub 2017-88-08T09:20:38.293 C# Event Hub trigger function processed a message: 97
2017-08-88T99:20:30.293 Function completed (Success, Id=744de3de-2717-4b73-9985-edbBbdfcl2a9, Duration=0ms)
|H1E‘ngtE 2017-08-08T@9:20:30.561 Function started (Id=1b4615a3-a4b9-4e70-a@79-9ded8c523ef2)
2017-08-08T09:20:30.561 C# Event Hub trigger function processed a message: 98
-} Manage 2017-@8-88T99:20:30.561 Function completed (Success, Id=1b4615a3-a4b9-4e70-a079-9de@8c523ef2, Duration=0ms)
2017-08-08T09:20:30.848 Function started (Id-e@682ed3-7eS5e-4fT3-94d3-082520ckdale)
Q, Monitor 2017-08-88799:20:30.840 C# Event Hub trigger function processed a message: 99
2017-08-08T09:20:30.840 Function completed (Success, Id-e@682ed3-7e5e-4ff3-94d3-@82520ckdale, Duration=ems)
EE Proxies (preview) + 2017-83-88T@9:28:31.153 Function started (Id=715cce2@-699a-4dd9-8f1d-79f7ee529839)
2017-83-88T09:20:31.153 C# Event Hub trigger function processed a message: 108
i= Slots (preview) o 2017-88-88T@9:20:31.153 Function completed (Success, Id=715cce20-699a-4dd9-8f1d-79f7ee529839, Duration=-@ms)

Enabling authorization for function apps

If your web API (HTTP trigger) is being used by multiple client applications and you would

like to provide access only to the intended and authorized applications, then you need to
implement authorization in order to restrict access to your Azure Function.

Getting ready

I assume that you already know how to create a HTTP trigger function. Download the
Postman tool from https://www.getpostman.com/. The Postman tool is used for sending
the HTTP requests. You can also use any tool or application that can send HTTP requests

and headers.

[272]

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/

Chapter 9

How to do it...

1. Create a new HTTP trigger function (or open an existing HTTP function). Make
sure that while creating the function, you select Function as the option in the
Authorization level drop-down:

HTTP trigger (req) delete

Allowed HTTP methods €

All methods

Request parameter name €

req

Authorization level €

Function

If you would like to go with an existing HTTP trigger function that we
have created in one of our previous recipes, click on the Integrate tab and
change the Authorization level to Function and click on the Save button
to save the changes.

2. In the code editor tab, grab the function URL by clicking on the Get Function
URL link available in the right-hand side corner of the code editor in the
run.csx file.

3. Navigate to Postman tool and paste the function URL:

R No Environment
htitps://azurefunction:

POST https:/fazurefunctioncookbook.azurewebsites.net/api/HttpTrigger-Authorization?name=Praveen

Params Send N
Sreeramé&code=vbbwhyP4Ta35NpW]i1XmH/VKOMC/Z08VLTxYNHKab1dFlxyfayK]Kg==

[273]

Implement Best Practices for Azure Functions

4. Observe the URL that has the following query strings:

e code: This is the default query string that is expected by the function
runtime that validates the access rights of the accessing the function.
The validation functionality is automatically enabled without the need
for writing the code by the developer. All of this is taken care just by
enabling the Authorization level to Function.

e name: This is a query string that is required by the HTTP trigger
function.

5. Let’s remove the code query string from the URL in the Postman and try to make
a request. You will get a 401 Unauthorized error, as shown in the following
screenshot:

No Environment

tps://az on
POST I hups://azurefunctioncookbook.azurewebsites.net/api/Hrp Trigger-Authorization?name=Praveen Sreeram I Params Save

Authorization L]

o :‘:. e saome

How it works...

When you make a request via Postman or any other tool or application that can send HTTP
requests, the request will be received by the underlying Azure App Service web app (note
that Azure Functions are built on top of App Services) that first checks the presence of the
header name code either in the query string collection or in the Request Body. If it finds
one, then it validates the value of the code query string with the function keys. If it’s a valid
one, then it authorizes the request and allows the runtime to process the request. Otherwise,
it throws an error with a 401 Unauthorized request.

[274]

Chapter 9

There's more...

Note that the security key (in the form of the query string parameter named code) in the
preceding example is used for demonstration. In production scenarios, instead of passing
the key as a query string parameter (the code parameter), you need to add the x-
functions-key as an HTTP header, as shown in the following figure:

POST https:/fazurefunctioncookbook.azurewebsites.net/api/HttpTrigger-Authorization?name=Praveen Sreeram Params Save
:
Key Value
Content-Type application/json
I x-functions-key 1gj0ujIMa3i9H3arOMWIAexRS8saHE91)BHraaK 1Al rQKiJMEWKaA== I
Body 1"
Pretty
I 1 ['Hello Praveen Sreeram"

e The Controlling access to Azure Functions using function keys recipe

Controlling access to Azure Functions using
function keys

You have now learned how to enable the authorization of an individual HTTP trigger by
setting the Anonymous Level field with the value Function in the Integrate tab of the HTTP
trigger function. It works well if you have only one Azure Function as a backend web API
for one of your applications and you don't want to restrict access to the public.

However, in Enterprise level applications, you will end up developing multiple Azure
Functions across multiple function apps. In those cases, you would like to have fine-grained
granular access to your Azure Function for both your own applications or for some other
third-party applications that integrate your APIs in their applications.

In this recipe, you will learn how to work with function keys within Azure Functions.

[275]

Implement Best Practices for Azure Functions

How to do it...

Azure supports the following keys, which can be used to control access to the Azure
functions:

¢ Function Keys: These can be used to grant authorization permissions to a given
function. These keys are specific to the current function to which the keys are
associated.

¢ Host Keys: We can use these to control the authorization of all the functions
within an Azure function app.

Configuring the function key for each application

If you are developing an API using Azure Functions that can be used by multiple
applications, then it’s a good practice to have a different function key for every function and
generate an individual key for each client application that is going to use your functions.
Navigate to the Manage tab of the Azure Function to view and manage all the keys related
to the function.

Function Keys

NAME VALUE ACTIONS
default Click to show &1 Copy Z Renew % Revoke

Add new function key

By default, a key with the name default is generated for us. If you would like to generate a
new key, then click on the Add new function key button shown in the preceding
screenshot.

Function Keys

NAME VALUE ACTIONS

default Click to show € Copy < Renew % Revoke
WebApplication Click to show & Copy Z Renew % Revoke
MaobileApplication Click to show £ Copy Z Renew % Revoke

i0T Appl caticnl (Optional) Leave empty to auto-generate a key

[276]

Chapter 9

As per the preceding image, I have created the keys for the following applications:

® WebApplication: The key name WebApplication is configured to be used in
the website that uses the Azure Function.

e MobileApplication: The key name MobileApplication is configured to be
used in the mobile app that uses the Azure Function.

In a similar way, you can create different keys for any other app (in the preceding example,
an IOT application) depending on your requirements.

The idea behind having different keys for the same function is to have control over the
access permissions to the usage of the functions by different applications. For example, if
you would like to revoke the permissions only to an application but not for all the
applications, then you would just delete (or revoke) that key. In that way, you are not
impacting other applications that are using the same function.

Here is the downside of the function keys: if you are developing an application where you
need to have multiple functions and each function is being used by multiple applications,
then you will end up having many keys. Managing these keys and documenting them
would be a nightmare. In that case, you can go with host keys, which is discussed next.

Configuring one host key for all the functions in a
single function app

Having different keys for different functions is a good practice when you have a handful
number of functions used by few applications. However, things might get worse if you
have many functions and many client applications that leverage your APIs. Managing the
function keys in these large enterprise applications with a huge client base would be
painful. To make things simple, you can segregate all related functions into a single
function app and configure the authorization for each function app instead of an individual
function. You can configure authorization for a function app using host keys.

Here are the two different types of host keys available:

¢ Regular host keys
e Master key

[277]

Implement Best Practices for Azure Functions

Create two HTTP trigger Apps, as shown in the following screenshot:

-

b j Myapp

b f MyApp2

== Functions

Navigate to the Manage tab of both the apps, as shown in the following screenshot. You

will notice that both the master key and the host keys are the same in both the apps.

Function Keys
v == Functions -+ NAME VALUE
- k’: MyApp1 default Q3KfgDTWRS1zJBsNOZvmePNjsQZ g -
¥ Integrate Add new function key
¥ Manage
Q monitor Host Keys (All functions)
NAME VALUE
» f Myapp2 —
— _master LMBAQO482Zm61Ag0bXckG/KC
v == Proxies (preview) ==
default aDBKDCDwwIZWIYBVE7TUXMuak ==m
» 1= Slots (preview) -+
Add new host key

Add new host key

Manage tab of MyAppl
Function Keys
|7 B [UIEEEE + name VALUE ACTIONS
» f MyApp1 default Click to show €2 Copy
- f MyApp2 Add new function key
¥ Integrate
% Manage Host Keys (All functions)
Q Monitar NAME VALUE ACTIONS
— _master LMBAQ4827m61AgObXckG/K0as «nbieil il smpm g [melfE B o £ Copy
w 5= Proxies (preview) L
default aDEKDCDwWwIZWIYBVETHXMuakl .] Copy
p == slots (preview) -+

Manage tab of MyApp2

[278]

Chapter 9

As with the case of function keys, you can also create multiple host keys if
your function apps are being used by multiple applications. You can
control the access of each of the function apps by different applications

using different keys.

You can create multiple host keys by following the same steps that you
followed in creating the regular function keys.

There's more...

Renew: If you think that the key is compromised, then you can regenerate the key anytime
by clicking on the Renew button. Note that when you renew any key, all the applications
that access the function would no longer work and would get a 401 Unauthorized status

code error.

Revoke: You can delete the key if it is no longer used in any of the applications.

Is it
Key type | When should I use? revocable Renew | Comments
(can be
deleted)?
You can use master key for
When the any function within the
Master key | Authorization levelis | No Yes function app irrespective of
Admin the authorization level
configured
When the You can use the host key for
Hostkey | Authorization levelis |Yes Yes all the functions within the
Function function app
Function When tl.le . : You can use the function key
Authorization level is | Yes Yes . .
key . only for a given function
Function

Microsoft doesn't recommend sharing master key as it is also used by
runtime APIs. Be extra cautious with master key.

[279]

Implement Best Practices for Azure Functions

See also

e The Enabling authorization for function apps recipe

[280]

10

Implement Continuous
Integration and Deployment of
Azure Functions Using Visual

Studio Team Services

In this chapter, you will learn the following:

Continuous integration - creating a build definition

Continuous integration - queuing the build and trigger manually

Continuous integration - configuring and triggering the automated build

Continuous deployment - creating a release definition

Continuous deployment - triggering the release

Introduction

As a software professional, you might have already been aware of different software
development methodologies that people practice. Irrespective of the methodology being
followed, one will have multiple environments such as dev, staging, and production where
the application life cycle needs to be followed with these critical stages related to
development:

1. Develop based on the requirements
2. Build the application and fix any errors

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services

3. Deploy/release the package to an environment (Dev / Stage / Prod)
4. Test against the requirements

5. Promote the release to the next environment (from Dev to Stage and Stage to
Prod)

Please note that for the sake of simplicity, the initial stages, such as
requirement gathering, planning, design, and architecture, are excluded
just to emphasize the stages that are relevant to this chapter.

For each change that you make to the software, we need to build and deploy the application
to multiple environments, and it might be the case that different teams are responsible for
releasing the builds to different environments. As different environments and teams are
involved, considering the amount of time that is spent in running the builds, deploying
them in different would be more dependent on the processes that different companies
follow.

In order to streamline and automate a few of the steps mentioned earlier, in this chapter, we
will discuss some of the popular techniques that the industry follows in order to deliver the
software quickly with minimum infrastructure.

In all the previous chapters, most of the recipes provided us with a
solution for an individual business problem. However, in this chapter, the
entire chapter as a single entity will try to provide you with a solution for
continuous integration and continuous delivery on your business critical
application.

The Visual Studio team continuously keeps adding new features to VSTS (https://www.
visualstudio.com) and updates the user interface as well. Don't be surprised if screenshots
that are provided in this chapter don't match those of your screens in the https://www.
visualstudio.com while you are reading this.

[282]

https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com

Chapter 10

Prerequisites

Create the following if you have don't have them already:

1. Create a Visual Studio Team Services (VSTS) account in https://www.
visualstudio.com and create a new project within that account. While creating
the project, you can either choose Git or Team Foundation Version Control as
your version control repository from your VSTS account. I have used TFVC for
my project. You can go through the https://www.visualstudio.com/en-us/
docs/setup-admin/team-services/set-up-vs link to follow the step-by-step
process of creating a new account and project using VSTS.

Version control

‘ eam Foundation Version Contro V1@

Git

Team Foundation Version Control

2. Configure your Visual Studio project that you developed in Chapter
4, Understanding the Integrated Developer Experience of Visual Studio Tools for Azure
Functions to the VSTS.

Continuous integration - creating a build
definition

A build definition is a set of tasks that are required to configure an automated build of your
software. In this recipe, we will perform the following.

1. Create the Build definition template.
2. Provide all the inputs required for each of the steps for creating the build
definition

How to do it...

1. Navigate to the Builds & Release tab in your VSTS account and click on New
Definition to start the process of creating a new build definition.

[283]

https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services

2. You will be taken to the Select a template step, where you can choose the
button:

Select a template

required template for your required application. For this recipe, we will choose
ASP.NET Core (.NET Framework), as shown here, by clicking on the Apply

Or start with an gy Empty process

Featured

«)
)

/O Search
MNET Desktop

Build and run tests for MET Desktop or Windows Classic Desktop solutions, This
template requires that Yisual Studio be installed on the build agent,

ASPMET (PREVIEWY)

Build ASPMET web applications

Way ASPRET Core
Core

Build &ZPMET Core wweb applications

«)

ASPIMNET Core (NET Framework)

Build AZRMET Core web applications targeting the full \MET Frameweork
Azure Web App

Build, package, test and deploy your Szure Web App,

Apply

3. The Create build step is a set of steps used to define the build template. As
(1) Tasks

shown in the following screen capture, the build definition has six steps, where

Options
Frocess

each step has certain attributes that we need to review and provide inputs for
each of those fields based on our requirements. Let's start by providing a
Wariables Retention

meaningful name in the Process step, as shown in the following figure:
Triggers

History
() Some settings need attention

Get sources

. azurecookbook

Mare *

build-def-stg

[284]

Chapter 10

4. Select the HostedVS$2017 option in the Default agent queue drop-down, as

shown in the following screen capture:

Mame*

build-def-stg

Default agent gueue *

Hosted Y32017

An agent is a software hosted on the cloud that is capable of running a
build. As our project is based on V52017, we have chosen HostedVs2017.

5. In the Get Sources step, choose the following;:

1. Select the version control system that you would like to have.

2. Choose the branch that you want to build. In my example, I have only
one default branch.

Tasks

Wariables Triggers

Process
Build process

Get sources
& arurecookbook

I =)

MuGet restore
F2 MuGet Restore

Build solution
isuzl Studio Build

Test Assemblies
Wisual Studio Test

Publizh syrmbols path

Options

Retention

Historny

Get sources

From

®
>3

This project

GitHuh

0O ¢

Remote repo

Repository

% $/azurecookbook

)

Subwersion

<

[285]

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services

6. Leave the default options for all the following steps:

1. NuGet restore: This step is required for downloading and installing all
the required packages for the application.

2. Build solution: This step uses MS Build and has all the predefined
commands to create the build.

3. Test Assemblies: This would be useful if we had any automated tests.
Test assemblies are beyond the scope of this book.

4. Publish symbols path: These symbols are useful if you want to debug
your app hosted in the Agent VM.

5. Publish Artifact: The step has configuration related to the artifacts and
the path of storing the artifact (build package).

7. Once you review all the values in all the fields, click on Save, as shown in the
following screenshot, and click on Save again in the Save build definition

popup:

Sawve & queup

Save & gueue

Save

cts

How it works...

Build definition is just a blueprint of the tasks that are required for building a software
application. In this recipe, we have used a default template to create the build definition.
We can choose a blank template and create the definition by choosing the tasks available in
the VSTS as well.

When you run the build definition (either manually or automatically, which will be
discussed in the subsequent recipes), each of the tasks will be executed in the order in
which you have configured them. You can also rearrange the steps by dragging and
dropping them in the Process section.

[286]

Chapter 10

The build process starts with getting the source code from the chosen repository and then
downloading the required NuGet packages and then starts the process of building the
package, and once the process is complete, it creates a package and stores it in a folder
configured for the build.artifactstagingdirectory directory (refer to the Path to
Publish field of the Publish Artifact task). You can learn about all different type of
variables in the Variables tab shown here:

Tasks Triggers Options Retention History
Process variables T Mame B Value
Predefined variables BuildConfiguration release
BuildPlatforrm Ay Cpu
systern.collectionld 300560d2-16b5-48e7-9eh3-601c04d7eShd

There's more...

1. VSTS provides many tasks. You can choose a new task for the template by
clicking on the Add Task button, as shown in the following figure:

Tasks | Variables Triggers Options Retention History

Process Add tasks

Build process

Dan't see uhat ywou nee# Check out our Marketplace, 2 I

== (Getsources
arurecnokbonk Al Build Utility Test Package Deploy Tool
MuGet restore
F2 MuGet Restore 0 NNEE MNET Core I"\’
"Core i

. . Build, test and publish using dotnet core command-line,
Build solution i 2
Wisual Studio Build
Android Build (deprecated; use Gradle)

Test Assemblies Build an &ndraid app using Gradle and aptionally start the emulatar for
Wisual Studio Test unit tests

SEIN-)

o

Publish symbols path

Index Saurces & Publish Symbols . Android Signing

Sign and align Android APK files
Publish Artifact
Publish Build Artifacts *-— Ant
=
Build with Apache Ant

I=

+ Add Task

[287]

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services

2. If you don't find a task that suits your requirement, you can definitely search for
the suitable one in the market place by clicking on the Check out our
Marketplace button shown in the preceding figure.

3. ASP.NET Core (.NET Framework) has the correct set of tasks required to set up
the build definition for Azure Functions as well.

See also

e The Creating a Release definition recipe

Continuous integration - queuing the build
and trigger manually

In the previous recipe, you came to understand and learned how to create and configure the
build definition. In this recipe, you will learn how to trigger the build manually and
understand the process of building the application.

Getting ready

Before we begin, make sure:

1. That you have configured the build definition as mentioned in the previous
recipe.
2. That all your source code is checked in to the VSTS Team project.

How to do it...

1. Navigate to the build definition named build-def-stg and click on the Queue
button available on the right-hand side, as shown here:

R = Summary | [» Queue

[288]

Chapter 10

2. In the Queue build for build-def-stg popup, please make sure that the Hosted
VS§2017 option is chosen in the Agent queue drop-down if you are using Visual
Studio 2017 and click on the Queue button, as shown here:

Agent guele

Hosted V52017

Source wversion (i)

Shelveset narme

$fazurecookbook

Variables Demands

systern.debug

BuildConfiguration

BuildPlatform

—+ Add

Queue build for build-def-stg

falze

release

army cpu

Cancel

3. After you click on the Queue button in the preceding screen capture, in just a few
moments, the build will be queued and the message will be displayed as shown

in the following figure:

@ Build 201702041 has been queued,

[289]

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services

4. Clicking on the BuildID (in my case, 20170804 . 1) will start the process, and it
waits for a few seconds for an available agent to start the process, as shown here:

build-def-stg / Build 20170804 1/ Build

& Edit build definition 0 Cancel & Queue new build...

Build Started

Build
Waiting for an available agent

5. After a few moments, the build process will start, and in just a minute, if
everything goes fine, the build will be completed and you can review the steps of
the build in the logs, as shown here:

Builds Releases Library Task Groups Deployment Groups®

4

Build 20170304 1 build-def-stg / Build 201708041/ Build (@ Build not retained

" Build & Edit build definition B Queue new build.., J Download all logs as zip " Release

d ded

<

+ Initialize Agent

+ Initialize Job Build
+ Get Sources Ran for 87 seconds (Hosted Agent), completed 98 seconds ago
+ MuGet restore Logs Timeline Code coverage® Tests
+ Build solution
" Test Assemblies ucceed

ced.
+ Publish symbols path a' to file container: '#; 51/drop’

tifact 6 with build 11

+ Publish Artifact
+~ Post lob Cleanup

[290]

Chapter 10

6. In the preceding screen capture, click on BuildID (in my case, 20170804 . 1) to
view the summary of the build, which is also shown here:

build-def-stg / Build 201708041 (@ Build not retained

& Edit build definition B Queus new build,., | Download all logs a5 zip " Release

Build succeeded

I Build 20170804.1
Ran for 111 seconds (Hosted WS2017), cormpleted 16 minutes ago

Summary Timeline Code coverage® Tests

Build details Test Results
Definition build-def-stg {edit) Mo test runs are awailable for this build,
Source $fazureconkbook Enable autornated tests in wour build definition by adding fhe Visual Studio Test task,
Source wersion 9
Requested by Praveen Kurnar Code Coverage
Clueue name Hasted WS2017 Mo build code coverage data available,
Cueued Friday, Augustd, 2017 5:12 Abd Tags
Started Friday, Augustd, 2017 5:12 Abd
Finished Fricay, August 4, 2017 5:14 Abd Add tag...
Issues
Deployments
Build

Mo deployrments found for this build. Create release,

Mo test assernblies found matching the pattern: **release’*te st dil, **4obji,

7. If you would like to view the output of the build, click on the Artifacts button
highlighted in the preceding screen capture. You can (1) download the files by
clicking on the Download button or (2) view the files in the browser by clicking
on the Explore button, as shown here:

W an for 111 seconds (Hosted W52017), completed 16 minutes a

Sumrmary Timeline | Artifacts | Code coverage® Tests

Mame T

— 1
drop Download IEprore

See also

e The Continuous integration - creating a build definition recipe
e The Configuring and triggering the automated build recipe

[291]

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services

Configuring and triggering the automated
build

For most of the applications, it might not make sense to perform manual builds in the VSTS.
It would make sense if we can configure continuous integration by automating the process
of triggering the build for each check-in/commit done by the developers.

In this recipe, you will learn how to configure continuous integration in the VSTS for your
team project and also trigger the automated build by making a change to the code of the
HTTPTrigger Azure function that we have created in chapter 4, Understanding the
Integrated Developer Experience of Visual Studio Tools for Azure Functions.

How to do it...

1. Navigate to the build definition build-def-stg that we have created and click on
the Triggers menu, shown as follows:

& - > build-def-stg

Tasks “ariables | Triggers] Options Retention History

Continuous Integration
Build every change to matching branches

Enable this trigger

[Disabled

Gated Check-in

Sccept check-ins anly if the submitted changes merge and build successfully

Enable this trigger

® Disabled

[292]

Chapter 10

2. Now, click on the Enable this Trigger button to enable the automated build
trigger. You can also configure the items that you would like to exclude in this
step:

Tasks Wariables Triggers Options Retention History

Continuous Integration
Build every change to matching branches

Dizable this trigger

@D :rabled

lReposituries

azurecookbook

Build wihen ary branch changes

|:| Batch changes while a build is in progress

Path Filters
Type Path specification

Inelude s } fazurecookboolk g]EI
+ Add

[293]

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services

3. Save the changes by clicking on the arrow mark available beside the Save &
queue button and click on the Save button available in the drop-down menu,
which is shown here:

Sawe & gqueuf ™~

Save & gueue

Save

Ul

match Save as draft

le this trigger

4. Let's navigate to the Azure function project in Visual Studio. Make a small
change to the last line of the Run function source code that is shown here. I just
replace the word hello with Automated Build Trigger test by, as shown
here:

return name == null

? reqg.CreateResponse (HttpStatusCode.BadRequest, "Please pass a

name on the query string or in the request body")
req.CreateResponse (HttpStatusCode.OK, "Automated Build

Trigger test by " + name);

5. Let's check in the code and commit the changes to the Source Version control
VSTS. As shown here, you will get a new ChangeSetld generated. In this case, it
is Changeset 11.

Team Explorer - Pending Changes
fa ¥ | ¢ Search Work ltems (Ctrl+")

Pending Changes | azurecockbook

E Changeset 11 Iuccessfull}r checked in,

[294]

Chapter 10

6. Now, immediately navigate back to the VSTS build definition to see that a new
build got triggered automatically and is in progress, as shown. Also, note that
ChangeSetld is mentioned in the Triggered by column, as shown in the

following figure:

Builds Releases Library Task Groups Deployment Groups®

Build Definitions

Mine All Definitions Queued XAML

Requested by me Status

build-def-stg ; #:0170804.4
Praveen Kurnar requested just nowe

P inprogress

Build 1D or build number 2

Triggered by

@ 11in $9 $/azurecookbook

How it works...

These are the steps followed in this recipe:

1. We enabled the automatic build trigger for the build definition.
2. We made a change to the codebase and checked in to VSTS.
3. Automatically, a new build got triggered in VSTS immediately after the code is

committed to the VSTS.

There's more...

If you would like to restrict the developers to check in the code only after a successful build,
then you need to enable Gated-Check-in. In order to enable this, edit the build definition by

clicking on the ellipses, as shown here:

Build Definitions

Mine All Definitions Queued KAML

Status

' succeeded

Requested by me

build-def-stg : #20170804.4

Praveen Kurnar requested 21 minutes ago

Build 1D or build number 2

Triggered by

4 11in 0 §/azurecookbook

[295]

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services

In the popup, click on the Edit button and then navigate to the Triggers tab and enable
Gated Check-in, as shown in the following figure:

& - > build-def-stg

Tasks Wariables ETrigger: Options Retention History

BATCh CNanges wWille a puld 15 1N progress

Path Filters
Type Path specification

Include e §/azurecookbook ~
-+ Add

Gated Check-in

Accept check-ins only if the submitted changes merge and build successfully

Disable this trigger

@D crabled

Run continuous integration triggers for committed changes

Use waorkspace mapping for filters

Now go back to Visual Studio and make some changes to the code. If you try to check in the
code without building the application from within the Visual Studio, then you will get an
alert, as shown here:

T T

q Gated Check-in ? >y

) You need to build your changes for validation before they can be
committed to the Team Foundation Server

—

Your changes have been shelved and will be built as follows:

Shelveset: Gated_2017-08-04_06.49.31.3570
Build definition: build-def-stg (azurecookbook)

Hide optiong Build Changes Cancel

Preserve my pending changes locally
[] Bypass validation build and check in my changes directly {requires permissions)

I 1n

If your changes build successfully, they will be checked in automatically on your behalf.

[296]

Chapter 10

Click on Build Changes in the preceding step to start the build in the Visual Studio. As
soon as the build in the Visual Studio is complete, the code will be checked into the VSTS
and then a new build in VSTS will be triggered automatically.

See also

e The Continuous integration - creating a build definition recipe
e The Continuous integration - queuing the build and trigger manually recipe

Creating a release definition

Now that we know how to create a build definition and trigger an automated build in the
VSTS, our next step is to release or deploy the package to an environment where the project
stakeholders can review and provide feedback. In order to do that, first, we need to create a
release definition in the same way that we created the build definitions.

Getting ready

I have used the new Release definition editor to visualize the deployment pipelines.

The Release definition editor is still in preview. By the time you are reading this, if it is still
in preview, then you can enable it by clicking on the profile image and then clicking on the
Preview features link, as shown in the following figure:

Praveen Kurnar

5
Wy profile

[l Motification settings
Y Security

5| sage

¥ Preview features

Sign out

[297]

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services

You can then enable New Release Definition Editor, as shown here:

Preview featuras

The following preview features are available for your
ewaluation. Help us make thern better!

for me [Praveen Kumar] e

New Account Landing Page Q on

Updated Experience for the Account landing page for users,

New Release Definition Editor @D o

Turrn on the new release definition editor to wisualize wour
deployment pipelines, Learn more

Streamlined User Management ® Off

Improved user management page, ability to assign project
permissions during user inwitation,

Let's get started with creating a new release definition.

How to do it...

1. Navigate to the Releases tab, as shown in the following figure, and click on the
New Definition link:

[298]

Chapter 10

‘3 azurecookbook ~ Daszhboards Code Wark Build & Release Test Wiki¥

—
Builds Releases

| Library Task Groups Deployment Groups®

¥ Release Motifications: Release notifications: Try the enhanced experience for managing Release notifications. Learn mare

Release Management helps vou autormate the deployment and testing of
your software in multiple enwironments, You can either fully automate the
delivery of your software all the way to production, or set up semi-automated
processes with approwals and on-demand deplovments,

Start by creating a new release definition.

—+ Mew definition (7 Getting started

2. The next step is to choose a Release Definition template. In the Select a
Template popup, select Azure App Service Deployment and click on the Apply
button, as shown in the following screenshot. Immediately after clicking on the
Apply button, a new Environment popup will be displayed. For now, just close
the Environment popup:

Select a Template L Search
or

Featured

start with an @ Empty process

Azure App Service Deployment
Deploy your Web, Mobile, and Function apps to Azure Web App Apply

Deploy Node.js App to Azure App Service

Deplay your Nade js application to Azure Web App

Deploy PHP App to Azure App Service
Deploy your PHP Application to Azure Web App

1S Wiehsite and SOl Database Deanlovment

[299]

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services

3. Click on the Add button available in the Artifacts box to add a new Artifact, as
shown in the following figure:

mom

* New Release Definition 04-Aug

(0 Tasks w Wariahles Retention Options History

Artifacts | f Environments |
Build & Staging Q
2o

4. In the Add Artifact popup, make sure that you choose the following:
1. Source type - Build

2. Project - The team project your source code is linked to.

3. Source (Build definition) - The build definition name where your
builds are created.

[300]

Chapter 10

Add artifact

Source type

Build o
Project *

azurecookhbook g

Source (Build definition) *

build-def-sty g

Default wersion * (i)

Latest ~

Source alias (0

build-def-sty
(D) The artifacts published by each version will be available for deployment in Release Management.
The latest successful build of build-def-stg published the following artifacts: drop.

5. After reviewing all the values in the page, click on the Add button to add the
artifact.

[301]

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services

6. Once the Artifact is added, the next step is to configure the Environment where
the package needs to be published. Click on the 1 Phase 1 Task link, as shown in

the following figure. Also, change the name of the release definition name to
release-def-stg.

' release-def-stg

Pipeline (0 Tasks « Wariables Retention Options History

Artifacts | + Add Environments | + Add ™

P ~

/" Build

‘ | é% [| e (O\
Ry Sl 1 phase, 1task
S~

7. You will be taken to the Tasks tab, as shown here. Provide a meaningful name to
the Environment name field. I have provided the name as Staging for this
example. Next, click on the Deploy Azure App Service item.

% release-def-stg

Pipeline) Tasks - Wariables Retention Options History

Staging

Erwironrent narme
1 Some settings need attention

‘ Staging|

Run on agent +
B Runonagent

Deploy Azure App Service

(7 Some settings need attention

[302]

Chapter 10

8. In the Deploy Azure App Service step, choose the Azure Subscription and the
App Service name in which you would like to deploy the release, as shown here.

If you don't see your subscription or app service, refresh the item by
clicking on the icon highlighted in the following screenshot.

Azure App Service Deploy @ > Remove

Yersion 3% hd

Display name *

FunctionApplntisualStudio

Azure subscription ® (i)

Wizual Studio Enterprize — MPN (36604797 -e7c7 -4050-8b87 -d2f964 1c0268) hd (SN B

App Service name ¥ (i)

FunctionApplntfisualStudio v 1D

Deploy to slot ()

9. Click on the Save button to save the changes. Now let's use this release definition
and try to create new release by clicking on Create release, as shown in the
following screenshot:

+ Releas

+ Create release

-+ Create draft release

[303]

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services

10. After clicking on the Create release button, you will be taken to the Create new
release popup where you can configure the build definition that needs to be
used. As we have only one, we can see only one build definition, as shown here.
Once you review it, click on the Queue button to queue the release:

Create new release
release-def-stg

Felease description

Automated Release to Staging

Ceployment trigger

Source Wersion

build-def-stg 20170804.5 ~

c ane EI

11. Clicking on the Queue button in the preceding step will get the package and
deploy it to the selected app service.

How it works...

In the Pipeline tab, we have created Artifacts and an Environment named Staging and
linked both.

We have also configured the Environment to have the Azure App Service related to the
Azure Functions that we created chapter 4, Understanding the Integrated Developer
Experience of Visual Studio Tools for Azure Functions.

[304]

Chapter 10

There's more...

If you are configuring continuous deployment for the first time, you might see a button
with the text Authorize in the Azure App Service Deployment step. Clicking on the
Authorize button will open a pop-up window where you will be prompted to provide your
Azure Management Portal's credentials.

See also

e The Trigger the release automatically recipe

e The Deploying the Azure Function app to Azure Cloud using Visual Studio recipe of
Chapter 4, Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

Trigger the release automatically

In this recipe, you will learn how to configure continuous deployment to an environment.
In your project, you can configure a Dev/Staging or any other preproduction environment
and configure continuous deployment to streamline the deployment process.

In general, it is not recommended that you configure continuous deployment to the
production environment. However, it might depend on various factors and requirements.
Be cautious and think about various scenarios before you configure continuous deployment
to your production environment.

Getting ready

Download and install the Postman tool if you have not installed it yet.

[305]

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services

How to do it...

1. By default, the releases are configured to be pushed manually. Let's configure
continuous deployment by navigating back to the Pipelines tab and clicking on
the Continuous deployment trigger, as shown here:

Pipeline Tazks ~ Wariables Retention Options History

Artifacts | 4+ Add Environments | =+ Add
puill 7 ' |
o % Staging a
build-def-... a

1 phase, 1task |
L

2. As shown in the following figure, enable the Continuous deployment trigger
and click on Save to save the changes:

Continuous deployment trigger
Build: build-def-stg

@D :rabled

Creates release every time a new build is awvailable,

Build branch filters @

Build tags

+ Add

[306]

Chapter 10

3. Navigate to Visual Studio and make some code changes, as shown here:

name = name ?? data?.name;

return name == null

? reqg.CreateResponse (HttpStatusCode.BadRequest,

name on the query string or in the request body")

req.CreateResponse (HttpStatusCode.OK,

Trigger & Release Trigger test by " + name);

"Automated Build

"Please pass a

4. Now check in the code with a comment Continuous Deployment to commit the
changes to the VSTS. As soon as you check in the code, navigate to the Builds tab
to see a new build get triggered, as shown here:

Requested by rme

build-def-stg

Praveen Kurnar requested just now

PK

Status

Triggered

b in progress

by

Continous Deployment

eI Py azareconroook

5. Navigate to Releases tab after the build is complete to see that a new release got
triggered automatically, as shown in the following figure:

I Re\easasl Library Task Groups Deployment Groups®

<
4+~ All release definitions

Quervi Rel Deleted
|ease definitions.. /0 enie cleases wleke

U

hse Definitions

release definitions e & Title

| Release:s |

Release-2

w Release Definition 04-A..

ool v

Release-1

Release Definition

= Mew Release Definition 04-...

Erwiranrments

ry=

Build

20170805.1 (Buildy

Mew Release Defl g pino: Deployment in progress

MNew Release Definition 04-..,

e

2017080415 (Builc)

20170804.13 (Builch

6. Once the release process is complete, you can review the change by making a
request to the HTTP Request using the Postman tool.

Eody

Pretty

(11)

JSON

—
-

1 ["Automated Build Trigger & Release Trigger test by

Praveen Sresram”

[307]

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services

How it works...

In the Pipeline tab, we have enabled the Continuous deployment trigger.

Every time a build (associated with the build-def-stg) is triggered, automatically, the
release-def-stg release will be triggered to deploy the latest build to the designated
environment. We have also seen the automatic release in action by making a code change in

Visual Studio.

There's more...

You can also create multiple environments and configure the definitions to release the
required builds to those environments.

See also

e The Creating a release definition recipe

[308]

A
Analytics query language
URL 175
Application Insights (Al)
access keys, configuring 180
custom derived metric report, configuring 184,
186
custom telemetry details, pushing 174
function, creating 176
query, integrating 181, 183
query, testing 181, 183
URL 176, 187
used, for monitoring Azure Functions 170, 174
used, for testing Azure Function responsiveness
155
used, for validating Azure Function
responsiveness 155
application telemetry
details, sending via email 186, 190
authorization
enabling, for function apps 272,274
automated build
configuring 292, 297
creating 297, 304
triggering 292
Azure Blob storage
image, storing 25, 28
Azure Cloud storage
connecting, from local Visual Studio environment
109, 111,113,114
Azure Cloud
C# Azure Function, debugging with Visual Studio
120, 121,122,124
function app, deploying with Visual Studio 115,
117,118,119
Azure Function Core Tools

Index

URL 105

Azure Function responsiveness

testing, with Application Insights 155
validating, with Application Insights 155

Azure Function Tools

URL 99

Azure Functions

about 7

access, controlling with function keys 275

and precompiled assemblies 214

application, creating with Visual Studio 221

Azure Al real-time Power Bl - C# function,
creating 198, 202

Blob trigger, testing with Microsoft Storage
Explorer 128

creating, with Azure CLI tools 150, 154, 161

developing 262

function key, configuring for each application 276

Function Keys 276

host key, configuring for functions in single
function app 277

Host Keys 276

HTTP trigger Azure Function, creating 216,218

HTTP triggers, testing with Postman 127

legacy C# application classes, migrating with
PowerShell 220

load testing, VSTS used 144, 149

Logic Apps, integrating 90

monitoring 164, 170

monitoring, Application Insights used 170, 174

Queue trigger, testing with Azure Managemental
portal 131

shared code, with class libraries 210, 213

strongly typed classes, using 225, 229

testing 126

testing, Azure CLI tools used 150, 154, 161

testing, on staged environment with deployment

slots 134, 143

tests, executing with Console Application 263

used, for Azure SQL Database interactions 69,
74

used, for implementing defensive applications
260

used, for integrating real-time Al monitoring data

with Power Bl 191

Azure Management portal

Durable Functions, configuring 232, 235
Azure SQL Database

interactions, Azure Functions used 69, 74
Azure Storage Explorer

URL 244
Azure Storage table output bindings

Azure Table storage service 20

partition key 20

row key 20

Storage Connection, exploring 19

used, for persisting employee details 13

B

Backend Web API (HttpTrigger) 256
backend Web API
building, with HTTP triggers 8, 13
Blob storage
email logging, implementing 48
Blob trigger
testing, Microsoft Storage Explorer used 128
build definition
creating 283, 288

C

C# Azure Functions
debugging, on Azure Cloud with Visual Studio
120,121,122,124
debugging, on local staged environment with
Visual Studio 2017 103, 104, 108, 109
Checkpointing and Replaying
about 252
URL 252
code repository
creating, for manageability within function app
204,208
Cognitive Services

[310]

App settings, configuring 62
Computer Vision APl account, creating 60
using, to locate faces from images 60
Computer Vision API
URL 68
Console Application
used, for executing tests 263
continuous delivery 282
continuous integration
about 282
build definition, creating 283, 288
build, queuing 288, 291
build, triggering manually 288, 291
custom derived metric report
configuring 184, 186
custom telemetry
details, pushing to analytics of Application
Insights 174

D

database as a service (DBaaS) 74
defensive applications
C# Console Application, creating 261
implementing, with Azure Functions 260
implementing, with Queue triggers 260
deployment slots
about 134
used, for testing Azure Function on staged
environment 134, 143
Durable Functions
Activity function
CreateQRCodelmagesPerCustomer, creating
249,252
Activity function GetAllCustomers, creating 248
configuring, in Azure Management portal 232,
235
Orchestrator function, creating 247
testing 244, 246
troubleshooting 244, 246
URL 232
used, for implementing multithreaded reliable
application 246

E

email content
attachment, adding 53
log file name, customizing with IBinder interface
51
modifying, to include attachment 51
email logging
implementing, in Blob storage 48
email notification
sending, to administrator with SendGrid service
36
sending, to end user dynamically 44
employee details
persisting, with Azure Storage table output
bindings 13
Event Hub
Azure Function Event Hub trigger, creating 266
Console Application, developing to stimulate loT
data 269
used, for handling massive ingress 265

F

function app
authorization, enabling 272, 274
creating, with Visual Studio 2017 99, 100, 102,
103
deploying, to Azure Cloud with Visual Studio
115,117,118,119
function keys
configuring, for each application 276
used, for controlling access to Azure Functions
275

H

hello world Durable function app
Activity function, creating 242
creating 236
developing 236
HttpStart Function, creating 238
Orchestrator function, creating 241
HTTP triggers
testing, Postman used 127
used, for building backend Web API 8, 13

[311]

IAsyncCollector function
used, for adding multiple messages to queue
255
ImageResizer trigger
used, for cropping image 29, 34
Integrated Development Environment (IDE) 98,
150

L

legacy C# application classes
migrating, to Azure Functions with PowerShell
220
local staged environment, Visual Studio 2017
C# Azure Functions, debugging 103, 104, 108,
109
local Visual Studio environment
Azure Cloud storage, connecting 109, 111, 112,
113,114
Logic Apps
creating 82
designing, with Gmail connector 84, 88
designing, with Twitter connector 84, 88
functionality, testing 89
integrating, with Azure Functions 90, 95
used, for monitoring tweets 81
used, for notifying popular users tweet 81

massive ingress

handling, with Event Hub for IoT 265
Microsoft Azure Storage Explorer

URL 109,126
Microsoft Storage Explorer

reference link 256

URL 260

used, for testing Blob trigger 128
multithreaded reliable applications

implementing, with Durable Functions 246

N

Node.js
URL 150

O

OneDrive
external file trigger, used for processing stored
file 74, 80
URL 75
Orchestration triggers
URL 236

P

Postman
URL 126, 236, 244, 272
used, for testing HTTP triggers 127
Power Bl
configuring, with dashboard 192, 198
configuring, with dataset 192, 198
configuring, with push URI 192, 198
real-time Al monitoring data, integrating 191
PowerShell
PowerShell Azure Function, creating 222
used, migrating legacy C# application classes to
Azure Functions 220
precompiled assemblies
about 214
class library, creating with Visual Studio 215
precompiled functions
advantages 109

Q

Queue trigger
testing, with Azure Management portal 131
used, for implementing defensive applications
260
Queue
multiple messages, adding with IAsyncCollector
function 25, 255
profile image, saving with Queue output bindings
20

R

real-time Al monitoring data
integration, with Power Bl using Azure Functions
191
Redis Cache 220
Release definition editor 297

[312]

release
triggering automatically 305, 308

S

SendGrid
account, creating 36
SendGrid API key, configuring with Azure
Function app 40
SendGrid API key, generating 39
service used, for sending email notification to
administrator 36
shared access signature (SAS) 129
shared code
across Azure Functions, with class libraries 210,
213
Simple Mail Transfer Protocol (SMTP) 43
slots 134
SMS notification
sending, to end user with Twilio service 54
SQL Server Management Studio (SSMS)
about 69
URL 69
staged environment
Azure Functions, testing with deployment slots
134,143
strongly typed classes
using, in Azure Functions 225, 229

Twilio
service, using to send SMS notification 54
URL 54

\'

virtual machine (VM) 231
Visual Studio 2017 Preview Version 15.3.0
URL 99
Visual Studio 2017
C# Azure Functions, debugging on Azure Cloud
120, 121,122,124
C# Azure Functions, debugging on local staged
environment 103, 104, 108, 109
function app, creating 29, 100, 102, 103
function app, deploying on Azure Cloud 115,

117,118,119
Visual Studio Team Services (VSTS)
about 98, 125
URL 283
used, for load testing Azure Functions 144, 149
Visual Studio
references 282

used, for creating application 221
used, for creating class library 215

w

WebJob attributes
reference 114

	Title Page
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewer
	Acknowledgments
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Accelerate Your Cloud Application Development Using Azure Function Triggers and Bindings
	Introduction
	Building a backend Web API using HTTP triggers
	Getting ready
	How to do it…
	How it works…
	See also

	Persisting employee details using Azure Storage table output bindings
	Getting ready
	How to do it...
	How it works...
	Understanding more about Storage Connection
	What is Azure Table storage service?
	Partition key and row key

	There's more...

	Saving the profile images to Queues using Queue output bindings
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Storing the image in Azure Blob storage
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also...

	Cropping an image using ImageResizer trigger
	Getting ready
	How to do it...
	How it works...
	See also

	Working with Notifications Using SendGrid and Twilio Services
	Introduction
	Sending an email notification to the administrator of the website using the SendGrid service
	Getting ready
	Creating a SendGrid account
	Generating the SendGrid API key
	Configuring the SendGrid API key with the Azure Function app

	How to do it...
	How it works...
	See also

	Sending an email notification to the end user dynamically
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing email logging in the Blob storage
	How to do it...
	How it works...

	Modifying the email content to include an attachment
	Getting ready
	How to do it...
	Customizing the log file name using IBinder interface
	Adding an attachment to the email

	There's more...

	Sending SMS notification to the end user using the Twilio service
	Getting ready
	How to do it...
	How it works...

	Seamless Integration of Azure Functions with Other Azure Services
	Introduction
	Using Cognitive Services to locate faces from the images
	Getting ready
	Creating a new Computer Vision API account
	Configuring App settings

	How to do it...
	How it works...
	There's more...

	Azure SQL Database interactions using Azure Functions
	Getting ready
	How to do it...
	How it works...

	Processing a file stored in OneDrive using an external file trigger
	Getting ready
	How to do it...

	Monitoring tweets using Logic Apps and notifying when popular users tweet
	Getting ready
	How to do it...
	Create a new Logic App
	Designing the Logic App with Twitter and Gmail connectors
	Testing the Logic App functionality

	How it works...
	See also

	Integrating Logic Apps with Azure Functions
	Getting ready
	How to do it...
	There's more...
	See also

	Understanding the Integrated Developer Experience of Visual Studio Tools for Azure Functions
	Introduction
	Creating the function app using Visual Studio 2017
	Getting ready
	How to do it...
	How it works...
	There's more...

	Debugging C# Azure Functions on a local staged environment using Visual Studio 2017
	Getting ready
	How to do it...
	How it works...
	There's more...

	Connecting to the Azure Cloud storage from local Visual Studio environment
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Deploying the Azure Function app to Azure Cloud using Visual Studio
	How to do it...
	There's more...
	See also

	Debugging live C# Azure Function hosted on the Microsoft Azure Cloud environment using Visual Studio
	Getting ready
	How to do it...
	See also

	Exploring Testing Tools for the Validation of Azure Functions
	Introduction
	Testing Azure Functions
	Getting ready
	How to do it...
	Testing HTTP triggers using Postman
	Testing Blob trigger using the Microsoft Storage Explorer
	Testing Queue trigger using the Azure Management portal

	There's more...

	Testing an Azure Function on a staged environment using deployment slots
	How to do it...
	There's more

	Load testing Azure Functions using VSTS
	Getting ready
	How to do it...
	There's more...
	See also

	Creating and testing Azure Function locally using Azure CLI tools
	Getting ready
	How to do it...

	Testing and validating Azure Function responsiveness using Application Insights
	Getting ready
	How to do it...
	How it works...
	There's more...

	Monitoring and Troubleshooting Azure Serverless Services
	Introduction
	Monitoring your Azure Functions
	Getting ready
	How to do it...
	There's more...

	Monitoring Azure Functions using Application Insights
	Getting ready
	How to do it...
	How it works...
	There's more ...

	Pushing custom telemetry details to analytics of Application Insights
	Getting ready
	How to do it...
	Creating AI function
	Configuring access keys
	Integrating and testing AI query
	Configuring the custom derived metric report

	How it works...
	See also

	Sending application telemetry details via email
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Integrating real-time AI monitoring data with Power BI using Azure Functions
	Getting ready
	How to do it...
	Configuring Power BI with dashboard, dataset, and push URI
	Creating Azure AI real-time Power BI - C# function

	How it works...
	There's more...

	Code Reusability and Refactoring the Code in Azure Functions
	Introduction
	Creating a common code repository for better manageability within a function app
	How to do it...
	How it works...
	There's more...
	See also

	Shared code across Azure Functions using class libraries
	How to do it...
	How it works...
	There's more...
	See also

	Azure Functions and precompiled assemblies
	Getting ready...
	How to do it...
	Creating a class library using Visual Studio
	Creating a new HTTP trigger Azure Function

	How it works...
	There's more...
	See also

	Migrating legacy C# application classes to Azure Functions using PowerShell
	Getting ready
	How to do it...
	Creating an application using Visual Studio
	Creating a new PowerShell Azure Function

	How it works...
	See also

	Using strongly typed classes in Azure Functions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Developing Reliable and Durable Serverless Applications Using Durable Functions
	Introduction
	Configuring Durable Functions in the Azure Management portal
	Getting ready
	How to do it...
	There's more...
	See also

	Creating a hello world Durable Function app
	Getting ready
	How to do it...
	Creating HttpStart Function - the Orchestrator client
	Creating Orchestrator function
	Creating Activity function

	How it works...
	There's more...
	See also

	Testing and troubleshooting Durable Functions
	Getting ready
	How to do it...
	See also

	Implementing multithreaded reliable applications using Durable Functions
	Getting ready
	How to do it...
	Creating Orchestrator function
	Creating Activity function GetAllCustomers
	Creating Activity function CreateBARCodeImagesPerCustomer

	How it works...
	There's more...
	See also

	Implement Best Practices for Azure Functions
	Adding multiple messages to a Queue using the IAsyncCollector function
	Getting ready
	How to do it...
	How it works...
	There's more...

	Implementing defensive applications using Azure Functions and Queue triggers
	Getting ready
	How to do it...
	CreateQueueMessage - C# Console Application
	Developing the Azure Function - Queue trigger
	Running tests using the Console Application

	How it works...
	There's more...

	Handling massive ingress using Event Hub for IoT and similar scenarios
	Getting ready
	How to do it...
	Creating an Azure Function Event Hub trigger
	Developing a Console Application that simulates IoT data

	Enabling authorization for function apps
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Controlling access to Azure Functions using function keys
	How to do it...
	Configuring the function key for each application
	Configuring one host key for all the functions in a single function app

	There's more...
	See also

	Implement Continuous Integration and Deployment of Azure Functions Using Visual Studio Team Services
	Introduction
	Prerequisites

	Continuous integration - creating a build definition
	How to do it...
	How it works...
	There's more...
	See also

	Continuous integration - queuing the build and trigger manually
	Getting ready
	How to do it...
	See also

	Configuring and triggering the automated build
	How to do it...
	How it works...
	There's more...
	See also

	Creating a release definition
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Trigger the release automatically
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Index
	Blank Page

