
Serverless Computing: Current Trends and
Open Problems

Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander
Slominski, Philippe Suter

Abstract Serverless computing has emerged as a new compelling paradigm for the
deployment of applications and services. It represents an evolution of cloud pro-
gramming models, abstractions, and platforms, and is a testament to the maturity
and wide adoption of cloud technologies. In this chapter, we survey existing server-
less platforms from industry, academia, and open source projects, identify key char-
acteristics and use cases, and describe technical challenges and open problems.

1 Introduction

Serverless Computing (or simply serverless) is emerging as a new and compelling
paradigm for the deployment of cloud applications, largely due to the recent shift of
enterprise application architectures to containers and microservices [22]. Figure 1
below shows the increasing popularity of the “serverless” search term over the last
five years as reported by Google Trends. This is an indication of the increasing
attention that serverless computing has garnered in industry tradeshows, meetups,
blogs, and the development community. By contrast, the attention in the academic
community has been limited.

From the perspective of an Infrastructure-as-a-Service (IaaS) customer, this
paradigm shift presents both an opportunity and a risk. On the one hand, it pro-
vides developers with a simplified programming model for creating cloud applica-
tions that abstracts away most, if not all, operational concerns; it lowers the cost
of deploying cloud code by charging for execution time rather than resource allo-
cation; and it is a platform for rapidly deploying small pieces of cloud-native code

Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Nick Mitchell, Vinod
Muthusamy, Rodric Rabbah, Aleksander Slominski, Philippe Suter
IBM Research, e-mail: name@us.ibm.com

Vatche Ishakian
Bentley University e-mail: vishakian@bentley.edu

1

ar
X

iv
:1

70
6.

03
17

8v
1

 [
cs

.D
C

]
 1

0
Ju

n
20

17

name@us.ibm.com
vishakian@bentley.edu

2

Fig. 1 Popularity of the term “serverless” as reported by Google Trends

that responds to events, for instance, to coordinate microservice compositions that
would otherwise run on the client or on dedicated middleware. On the other hand,
deploying such applications in a serverless platform is challenging and requires
relinquishing to the platform design decisions that concern, among other things,
quality-of-service (QoS) monitoring, scaling, and fault-tolerance properties.

From the perspective of a cloud provider, serverless computing provides an addi-
tional opportunity to control the entire development stack, reduce operational costs
by efficient optimization and management of cloud resources, offer a platform that
encourages the use of additional services in their ecosystem, and lower the effort
required to author and manage cloud-scale applications.

Serverless computing is a term coined by industry to describe a programming
model and architecture where small code snippets are executed in the cloud without
any control over the resources on which the code runs. It is by no means an indi-
cation that there are no servers, simply that the developer should leave most opera-
tional concerns such as resource provisioning, monitoring, maintenance, scalability,
and fault-tolerance to the cloud provider.

The astute reader may ask how this differs from the Platform-as-a-Service (PaaS)
model, which also abstracts away the management of servers. A serverless model
provides a “stripped down” programming model based on stateless functions. Un-
like PaaS, developers can write arbitrary code and are not limited to using a pre-
packaged application. The version of serverless that explicitly uses functions as the
deployment unit is also called Function-as-a-Service (FaaS).

Serverless platforms promise new capabilities that make writing scalable mi-
croservices easier and cost effective, positioning themselves as the next step in the
evolution of cloud computing architectures. Most of the prominent cloud computing
providers including Amazon [1], IBM [16], Microsoft [23], and Google [14] have
recently released serverless computing capabilities. There are also several open-
source efforts including the OpenLambda project [24].

Serverless computing is in its infancy and the research community has produced
only a few citable publications at this time. OpenLambda [24] proposes a reference
architecture for serverless platforms and describes challenges in this space (see Sec-
tion 3.1.3) and we have previously published two of our use-cases [6, 29] (see
Section 5.1). There are also several books for practitioners that target developers
interested in building applications using serverless platforms [11, 28].

Serverless Computing: Current Trends and Open Problems 3

1.1 Defining Serverless

Succinctly defining the term serverless can be difficult as the definition will overlap
with other terms such as PaaS and Software-as-a-Service (SaaS). One way to explain
serverless is to consider the varying levels of developer control over the cloud in-
frastructure, as illustrated in Figure 2. The Infrastructure-as-a-Service (IaaS) model
is where the developer has the most control over both the application code and oper-
ating infrastructure in the cloud. Here, the developer is responsible for provisioning
the hardware or virtual machines, and can customize every aspect of how an appli-
cation gets deployed and executed. On the opposite extreme are the PaaS and SaaS
models, where the developer is unaware of any infrastructure, and consequently no
longer has control over the infrastructure. Instead, the developer has access to pre-
packaged components or full applications. The developer is allowed to host code
here, though that code may be tightly coupled to the platform.

For this chapter, we will focus on the space in the middle of Figure 2. Here, the
developer has control over the code they deploy into the Cloud, though that code
has to be written in the form of stateless functions. (The reason for this will be
explained in Section 3.) The developer does not worry about the operational aspects
of deployment and maintenance of that code and expects it to be fault-tolerant and
auto-scaling. In particular, the code may be scaled to zero where no servers are
actually running when the user’s function code is not used, and there is no cost to
the user. This is in contrast to PaaS solutions where the user is often charged even
during idle periods.

Developer
Control LessMore

Full Stack
Services
(SaaS)

Hardware/VM
Deployment

(Paas)

custom infrastructure
custom application code

shared infrastructure
custom application code

shared infrastructure
shared service code

Serverless

Fig. 2 Developer control and Serverless computing

There are numerous serverless platforms the fall into the above definition. In this
chapter, we present the architecture and other relevant features of serverless com-
puting, such as the programming model. We also identify the types of application
workloads that are suitable to run on serverless computing platforms. We then con-
clude with open research problems, and future research challenges. Many of these
challenges are a pressing need in industry and could benefit from contributions from
academia.

4

2 Evolution

Serverless computing was popularized by Amazon in the re:Invent 2014 session
“Getting Started with AWS Lambda” [4]. Other vendors followed in 2016 with the
introduction of Google Cloud Functions [14], Microsoft Azure Functions [23] and
IBM OpenWhisk [16]. However, the serverless approach to computing is not com-
pletely new. It has emerged following recent advancements and adoption of virtual
machine (VM) and then container technologies. Each step up the abstraction lay-
ers led to more lightweight units of computation in terms of resource consumption,
cost, and speed of development and deployment.

Among existing approaches, Mobile Backend as-a-Service (MBaaS) bears a
close resemblance to serverless computing. Some of those services even provided
“cloud functions”, that is, the ability to run some code server-side on behalf of a
mobile app without the need to manage the servers. An example of such a service
is Facebook’s Parse Cloud Code [27]. Such code, however, was typically limited to
mobile use cases.

Software-as-a-Service (SaaS) may support the server-side execution of user pro-
vided functions but they are executing in the context of an application and hence
limited to the application domain. Some SaaS vendors allow the integration of arbi-
trary code hosted somewhere else and invoked via an API call. For example, this is
approach is used by the Google Apps Marketplace in Google Apps for Work [26].

3 Architecture

There are a lot of misconceptions surrounding serverless starting with the name.
Servers are still needed, but developers need not concern themselves with managing
those servers. Decisions such as the number of servers and their capacity are taken
care of by the serverless platform, with server capacity automatically provisioned
as needed by the workload. This provides an abstraction where computation (in the
form of a stateless function) is disconnected from where it is going to run.

The core capability of a serverless platform is that of an event processing system,
as depicted in Figure 3. The service must manage a set of user defined functions,
take an event sent over HTTP or received from an event source, determine which
function(s) to which to dispatch the event, find an existing instance of the function
or create a new instance, send the event to the function instance, wait for a response,
gather execution logs, make the response available to the user, and stop the function
when it is no longer needed.

The challenge is to implement such functionality while considering metrics such
as cost, scalability, and fault tolerance. The platform must quickly and efficiently
start a function and process its input. The platform also needs to queue events, and
based on the state of the queues and arrival rate of events, schedule the execution
of functions, and manage stopping and deallocating resources for idle function in-

Serverless Computing: Current Trends and Open Problems 5

Edge

UI

API	Gateway

Cloud
Event
Sources

Master
Worker

Worker
Ev
en

t	Q
ue

ue

Di
sp
at
ch
er

function	main()	{
return	{payload:	

'Hello	World};
}

codecode

code

code

Fig. 3 Serverless platform architecture

stances. In addition, the platform needs to carefully consider how to scale and man-
age failures in a cloud environment.

3.1 Survey of serverless platforms

In this section we will compare a number of serverless platform. We first list the
dimensions which will be used to characterize the architectures of these platforms,
followed by a brief description of each platform.

3.1.1 Characteristics

There are a number of characteristics that help distinguish the various serverless
platforms. Developers should be aware of these properties when choosing a plat-
form.

• Cost: Typically the usage is metered and users pay only for the time and resources
used when serverless functions are running. This ability to scale to zero instances
is one of the key differentiators of a serverless platform. The resources that are
metered, such as memory or CPU, and the pricing model, such as off-peak dis-
counts, vary among providers.

6

• Performance and limits: There are a variety of limits set on the runtime resource
requirements of serverless code, including the number of concurrent requests,
and the maximum memory and CPU resources available to a function invocation.
Some limits may be increased when users’ need grow, such as the concurrent re-
quest threshold, while others are inherent to the platforms, such as the maximum
memory size.

• Programming languages: Serverless services support a wide variety of program-
ming languages including Javascript, Java, Python, Go, C#, and Swift. Most plat-
forms support more than one programming language. Some of the platforms also
support extensibility mechanisms for code written in any language as long as it
is packaged in a Docker image that supports a well-defined API.

• Programming model: Currently, serverless platforms typically execute a single
main function that takes a dictionary (such as a JSON object) as input and pro-
duces a dictionary as output.

• Composability: The platforms generally offer some way to invoke one serverless
function from another, but some platforms provide higher level mechanisms for
composing these functions and may make it easier to construct more complex
serverless apps.

• Deployment: Platforms strive to make deployment as simple as possible. Typi-
cally, developers just need to provide a file with the function source code. Beyond
that there are many options where code can be packaged as an archive with mul-
tiple files inside or as a Docker image with binary code. As well, facilities to
version or group functions are useful but rare.

• Security and accounting: Serverless platforms are multi-tenant and must iso-
late the execution of functions between users and provide detailed accounting
so users understand how much they need to pay.

• Monitoring and debugging: Every platform supports basic debugging by using
print statements that are recorded in the execution logs. Additional capabilities
may be provided to help developers find bottlenecks, trace errors, and better un-
derstand the cicumstances of function execution.

3.1.2 Commercial platforms

Amazon’s AWS Lambda [1] was the first serverless platform and it defined several
key dimensions including cost, programming model, deployment, resource limits,
security, and monitoring. Supported languages include Node.js, Java, Python, and
C#. Initial versions had limited composability but this has been addressed recently.
The platform takes advantage of a large AWS ecosystem of services and makes
it easy to use Lambda functions as event handlers and to provide glue code when
composing services.

Currently available as an Alpha release, Google Cloud Functions [14] provides
basic FaaS functionality to run serverless functions written in Node.js in response
to HTTP calls or events from some Google Cloud services. The functionality is
currently limited but expected to grow in future versions.

Serverless Computing: Current Trends and Open Problems 7

Microsoft Azure Functions [23] provides HTTP webhooks and integration with
Azure services to run user provided functions. The platform supports C#, F#,
Node.js, Python, PHP, bash, or any executable. The runtime code is open-source
and available on GitHub under an MIT License. To ease debugging, the Azure Func-
tions CLI provides a local development experience for creating, developing, testing,
running, and debugging Azure Functions.

IBM OpenWhisk [16] provides event-based serverless programming with the
ability to chain serverless functions to create composite functions. It supports
Node.js, Java, Swift, Python, as well as arbitrary binaries embedded in a Docker
container. OpenWhisk is available on GitHub under an Apache open source license.
The main architectural components of the OpenWhisk platform are shown in Fig-
ure 4. Compared to the generic architectural diagram in Figure 3, we can see there
are additional components handling important requirements such as security, log-
ging, and monitoring.

Edge

UI

API	Gateway

Master

Worker

Worker

Controller Entitlement

Log	Forwarder

Consul

Registrator

Execution	Engine

Invoker

Registrator

Log	
Forwarder

Executor

Executor

Executor

Cloud
Event
Sources

Execution	Engine

Fig. 4 IBM OpenWhisk architecture

3.1.3 New and upcoming serverless platforms

There are several serverless projects ranging from open source projects to vendors
that find serverless a natural fit for their business.

8

OpenLambda [24] is an open-source serverless computing platform. The source
code is available in GitHub under an Apache License. The OpenLambda paper [15]
outlines a number of challenges around performance such as supporting faster func-
tion startup time for heterogenous language runtimes and across a load balanced
pool of servers, deployment of large amounts of code, supporting stateful interac-
tions (such as HTTP sessions) on top of stateless functions, using serverless func-
tions with databases and data aggregators, legacy decomposition, and cost debug-
ging. We have identified similar challenges in Section 6.

Some serverless systems are created by companies that see the need for server-
less computing in the environments they operate. For example Galactic Fog [13]
added serverless computing to their Gestalt Framework running on top of Mesos
D/C. The source code is available under an Apache 2 license. Auth0 has created
webtasks [3] that execute serverless functions to support webhook endpoints used
in complex security scenarios. This code also available as open source. Iron.io had
a serverless support for tasks since 2012 [19]. Recently they announced Project
Kratos [18] that allows developers to convert AWS Lambda functions into Docker
images, and is available under an Apache 2 license. Additionally they are work-
ing with Cloud Foundry to bring multi-cloud serverless support to Cloud Foundry
users [17]. LeverOS is an open source project that uses an RPC model to communi-
cate between services. Computing resources in LeverOS can be tagged so repeated
function invocations can be targeted to a specific container to optimize runtime per-
formance, such as taking advantage of warm caches in a container.[21].

3.2 Benefits and drawbacks

Compared to IaaS platforms, serverless architectures offer different tradeoffs in
terms of control, cost, and flexibility. In particular, they force application developers
to carefully think about the cost of their code when modularizing their applications,
rather than latency, scalability, and elasticity, which is where significant develop-
ment effort has traditionally been spent.

The serverless paradigm has advantages for both consumers and providers. From
the consumer perspective, a cloud developer no longer needs to provision and man-
age servers, VMs, or containers as the basic computational building block for offer-
ing distributed services. Instead the focus is on the business logic, by defining a set
of functions whose composition enables the desired application behavior. The state-
less programming model gives the provider more control over the software stack,
allowing them to, among other things, more transparently deliver security patches
and optimize the platform.

There are, however, drawbacks to both consumers and providers. For consumers,
the FaaS model offered by the platform may be too constraining for some applica-
tions. For example, the platform may not support the latest Python version, or cer-
tain libraries may not be available. For the provider, there is now a need to manage
issues such as the lifecycle of the user’s functions, scalability, and fault tolerance

Serverless Computing: Current Trends and Open Problems 9

in an application-agnostic manner. This also means that developers have to care-
fully understand how the platform behaves and design the application around these
capabilities.

One property of serverless platforms that may not be evident at the outset is that
the provider tends to offer an ecosystem of services that augment the user’s func-
tions. For example, there may be services to manage state, record and monitor logs,
send alerts, trigger events, or perform authentication and authorization. Such rich
ecosystems can be attractive to developers, and present another revenue opportunity
for the cloud provider. However, the use of such services brings with it a dependence
on the provider’s ecosystem, and a risk of vendor lock-in.

3.3 Current state of serverless platforms

There are many commonalities between serverless platforms. They share similar
pricing, deployment, and programming models. The main difference among them is
the cloud ecosystem: current serverless platforms only make it easy to use the ser-
vices in their own ecosystem and the choice of platform will likely force developers
to use the services native to that platform. That may be changing as open source
solutions may work well across multiple cloud platforms.

4 Programming model

Serverless functions have limited expressiveness as they are built to scale. Their
composition may be also limited and tailored to support cloud elasticity. To maxi-
mize scaling, serverless functions do not maintain state between executions. Instead,
the developer can write code in the function to retrieve and update any needed state.
The function is also able to access a context object that represents the environment
in which the function is running (such as a security context). For example, a function
written in JavaScript could take the input, as a JSON object, as the first parameter,
and context as the second:

function main(params, context) {
return {payload: ’Hello, ’ + params.name

+ ’ from ’ + params.place};
}

4.1 Ecosystem

Due to the limited and stateless nature of serverless functions, an ecosystem of scal-
able services that support the different functionalities a developer may require is es-

10

sential to having a successfully deployed serverless application. For example, many
applications will require the serverless function to retrieve state from permanent
storage (such as a file server or database). There may be an existing ecosystem of
functions that support API calls to various storage systems. While the functions
themselves may scale due to the serverless guarantees, the underlying storage sys-
tem itself must provide reliability and QoS guarantees to ensure smooth operation.
Serverless functions can be used to coordinate any number of systems such as iden-
tity providers, messaging queues, and cloud-based storage. Dealing with the chal-
lenges of scaling of these systems on-demand is as critical but outside the control of
the serverless platform. To increase the adoption of serverless computing there is a
need to provide such scalable services. Such an ecosystem enables ease of integra-
tion and fast deployment at the expense of vendor lock-in.

4.2 Tools and frameworks

Creating and managing serverless functions requires several operations. Instead of
managing each function independently it is much more convenient to have a frame-
work that can logically group functions together to deploy and update them as a
unit. A framework may also make it easier to create functions that are not bound to
one serverless service provider by providing abstractions that hide low-level details
of each serverless provider. Other frameworks may take existing popular program-
ming models and adapt them for serverless execution. For example Zappa [30] and
Chalice [9] use an @app.route decorator to make it possible to write python code
that looks like a webserver but can be deployed as a serverless function:

@app.route("/{name}/{place}")
def index():

return {"hello": name, "from": place }

5 Use cases and workloads

Serverless computing has been utilized to support a wider range of applications.
From a functionality perspective, serverless and more traditional architectures may
be used interchangeably. The determination of when to use serverless will likely be
influenced by other non-functional requirements such as the amount of control over
operations required, cost, as well as application workload characteristics.

From a cost perspective, the benefits of a serverless architecture are most appar-
ent for bursty, compute intensive workloads. Bursty workloads fare well because
the developer offloads the elasticity of the function to the platform, and just as im-
portant, the function can scale to zero, so there is no cost to the consumer when the
system is idle. Compute intensive workloads are appropriate since in most platforms
today, the price of a function invocation is proportional to the running time of the

Serverless Computing: Current Trends and Open Problems 11

function. Hence, I/O bound functions are paying for compute resources that they
are not fully taking advantage of. In this case, a multi-tenant server application that
multiplexes requests may be cheaper to operate.

From a programming model perspective, the stateless nature of serverless func-
tions lends themselves to application structure similar to those found in functional
reactive programming [5]. This includes applications that exhibit event-driven and
flow-like processing patterns.

5.1 Event processing

One class of applications that are very much suitable for is event-based program-
ming [6, 29]. The most basic example, popularized by AWS Lambda, that has be-
come the “Hello World” of serverless computing is a simple image processing event
handler function. The function is connected to a data store, such as Amazon S3 [2],
that emits change events. Each time a new image file is uploaded to a folder in S3
an event is generated, and forwarded to the event handler function that generates a
thumbnail image that is stored in another S3 folder. The flow is depicted in Figure 5.
This example works well for serverless demos as the function is completely stateless
and idempotent which has the advantage that in the case of failure (such as network
problems accessing the S3 folder), the function can be executed again with no side
effects. It is also an exemplary use case of a bursty, compute intensive workload as
described above.

Image&
database&

Thumbnail&
database&

Serverless&func6on&
to&generate&
thumbnail&

New&image&
event&

Store&
image&

Fig. 5 Image processing

5.2 API composition

Another class of applications involves the composition of a number of APIs. In this
case, the application logic consists of data filtering and transformation. For example,
a mobile app may invoke geo-location, weather, and language translation APIs to
render the weather forecast for a user’s current location. The glue code to invoke
these APIs can be written in a short serverless function, as illustrated by the Python
function in Figure 6. In this way, the mobile app avoids the cost of invoking the

12

multiple APIs over a potentially resource constrained mobile network connection,
and offloads the filtering and aggregation logic to the backend.

def main(dict):
 zip = gis.geoToZip(dict.get("coords"))
 forecasts = weather.forecast(zip)
 firstThreeDays = forecasts[0:3]
 translated = language.translate(firstThreeDays , ”en", ”fr")
 return {"forecast": filter(translated)}

CoordToZipCode*
service*

Weather*forecast*
service*

Language*transla8on*
service*

Mobile*app*

Lat/long*
coordinates*

3*day*weather*
forecast*in*French*

Fig. 6 Offloading API calls and glue logic from mobile app to backend

5.3 API Aggregation to Reduce API Calls

API aggregation can work not only as a composition mechanism, but also as a means
to simplify the client-side code that interacts with the aggregated call. For example,
consider a mobile application that allows you to administer an Open Stack instance.
API calls in Open Stack [25] require the client to first obtain an API token, resolve
the URL of the service you need to talk to, then invoke the required API call on that
URL with the API token. Ideally, a mobile app would save energy by minimizing
the number of required calls needed to issue a command an Open Stack instance.
Figure 7 illustrates an alternative approach where three functions implement the
aforementioned flow to allow authenticated backups in an Open Stack instance. The
mobile client now makes a single call to invoke this aggregate function. The flow
itself appears as a single API call. Note that authorization to invoke this call can be
handled by an external authorization service, e.g. an API gateway.

Serverless Computing: Current Trends and Open Problems 13

Get API Token Get Server IDs Create Backup

Authenticated Backup

invoke

event

Fig. 7 Reducing the number of API calls required for a mobile client

5.4 Flow control for Issue Tracking

Serverless function composition can be used to control the flow of data between two
services. For example, imagine an application that allows users to submit feedback
to the app developers in the form of annotated screenshots and text. In figure 8,
the application submits this data to a backend consisting of a scalable database and
an on-premise issue tracking system. The latter is mainly used by the development
team and is not designed to accept high volume traffic. On the other hand, the former
is capable of responding to high volume traffic. We design our system to stage all
feedback records in the database using a serverless function which eliminates the
need to standup a separate server to handle feedback requests but still allows us
a level of indirection between the application and the backend database. Once we
collect a sufficient number of updates, we can batch them together into a single
update, which invokes a function to submit issues to the issue tracker in a controlled
manner. This flow would work for a scalable database system [7] and an issue
tracker system that accepts batched inputs [20].

Write Record Create Issue

database Issue tracker

AP
I

event

invokeinvoke
User

Interaction

update

Fig. 8 Batched invocation for issue tracking

14

5.5 Discussion

The workload and its relationship to cost can help determine if serverless is ap-
propriate. Infrequent but bursty workloads may be better served by serverless,
which provides horizontal scaling without the need for dedicated infrastructure that
charges for idle time. For more steady workloads, the frequency at which a function
is executed will influence how economical it can be for caching to occur which al-
lows far faster execution on warm containers than executing from a cold container.
These performance characteristics can help guide the developer when considering
serverless.

Interestingly, the cost considerations may affect how a serverless application is
structured. For example, an I/O bound serverless function can be decomposed into
multiple compute bound ones. This may be more complex to develop and debug,
but cheaper to operate.

6 Challenges and open problems

We will list challenges starting with those that are already known based on our
experience of using serverless services and then describe open problems.

6.1 System level challenges

Here is a list of challenges at the systems level.

• Cost: Cost is a fundamental challenge. This includes minimizing the resource
usage of a serverless function, both when it is executing and when idle. Another
aspect is the pricing model, including how it compares to other cloud comput-
ing approaches. For example, serverless functions are currently most economical
for CPU-bound computations, whereas I/O bound functions may be cheaper on
dedicated VMs or containers.

• Cold start: A key differentiator of serverless is the ability to scale to zero, or not
charging customers for idle time. Scaling to zero, however, leads to the problem
of cold starts, and paying the penalty of getting serverless code ready to run.
Techniques to minimize the cold start problem while still scaling to zero are
critical.

• Resource limits: Resource limits are needed to ensure that the platform can han-
dle load spikes, and manage attacks. Enforceable resource limits on a serverless
function include memory, execution time, bandwidth, and CPU usage. In addi-
tional, there are aggregate resource limits that can be applied across a number of
functions or across the entire platform.

Serverless Computing: Current Trends and Open Problems 15

• Security: Strong isolation of functions is critical since functions from many users
are running on a shared platform.

• Scaling: The platform must ensure the scalability and elasticity of users’ func-
tions. This includes proactively provisioning resources in response to load, and
in anticipation of future load. This is a more challenging problem in serverless
because these predictions and provisioning decisions must be made with little or
no application-level knowledge. For example, the system can use request queue
lengths as an indication of the load, but is blind to the nature of these requests.

• Hybrid cloud: As serverless is gaining popularity there may be more than one
serverless platform and multiple serverless services that need to work together. It
is unlikely one platform will have all functionality and work for all use cases.

• Legacy systems: It should be easy to access older cloud and non-cloud systems
from serverless code running in serverless platforms.

6.2 Programming model and DevOps challenges

• Tools: Traditional tools that assumed access to servers to be able to monitor
and debug applications aren’t applicable in serverless architectures, and new ap-
proaches are needed.

• Deployment: Developers should be able to use declarative approaches to control
what is deployed and tools to support it.

• Monitoring and debugging: As developers no longer have servers that they can
access, serverless services and tools need to focus on developer productivity. As
serverless functions are running for shorter amounts of time there will be many
orders of magnitude more of them running making it harder to identify problems
and bottlenecks. When the functions finish the only trace of their execution is
what serverless platforms monitoring recorded.

• IDEs: Higher level developer capabilities, such as refactoring functions (e.g.,
splitting and merging functions), reverting to an older version, etc. will be needed
and should be fully integrated with serverless platforms.

• Composability: This includes being able to call one function from another, cre-
ating functions that call and coordinate a number of other functions, and higher
level constructs such as parallel executions and graphs. Tools will be needed to
facilitate creation of compositions and their maintenance.

• Long running: Currently serverless functions are often limited in their execu-
tion time. There are scenarios that require long running (if intermittent) logic.
Programming models and tools may decompose long running tasks into smaller
units and provide necessary context to track them as one long running unit of
work.

• State: Real applications often require state, and it’s not clear how to manage state
in stateless serverless functions - programing models, tools, libraries etc. will
need to provide necessary levels of abstraction.

16

• Concurrency: Express concurrency semantics, such as atomicity (function exe-
cutions need to be serialized), etc.

• Recovery semantics: Includes exactly once, at most once, and at least once se-
mantics.

• Code granularity: Currently, serverless platforms encapsulate code at the granu-
larity of functions. It’s an open question whether coarser or finer grained modules
would be useful.

6.3 Open Research Problems

Now we will describe a number of open problems. We frame them as questions to
emphasize that they are largely unexplored research areas.

What are the boundaries of serverless? A fundamental question about server-
less computing is of boundaries: is it restricted to FaaS or is broader in scope? How
does it relate to other models such as SaaS and MBaaS?

Fig. 9 The figure is showing relation between time-to-live (x-axis) and ease-of-scaling (y-axis).
Server-aware compute (bare metal, VMs, IaaS) has long time to live and take longer to scale (time
to provision new resources); server-less compute (FaaS, MBaaS, PaaS, SaaS) is optimized to work
on multiple servers and hide server details.

Serverless Computing: Current Trends and Open Problems 17

As serverless is gaining popularity the boundaries between different types of ”as-
a-Service” may be disappearing (see Figure 9). One could imagine that developers
not only write code but also declare how they want the code to run - as FaaS or
MBaaS or PaaS - and can change as needs change. In the future the main distinc-
tion may be between caring about server (server-aware) and not caring about server
details (server-less). PaaS is in the middle; it makes it very easy to deploy code but
developers still need to know about servers and be aware of scaling strategies, such
as how many instances to run.

Can different cloud computing service models be mixed? Can there be more
choices for how much memory and CPU can be used by serverless functions? Does
serverless need to have IaaS-like based pricing? What about spot and dynamic pric-
ing with dynamically changing granularity?

Is tooling for serverless fundamentally different from existing solutions? As
the granularity of serverless is much smaller than traditional server based tools we
may need new tools to deal well with more numerous but much shorter living ar-
tifacts. How can we make sure that the important ”information needle” is not lost
in haystack? Monitoring and debugging serverless applications will be much more
challenging as there are no servers directly accessible to see what went wrong. In-
stead, serverless platforms need to gather all data when code is running and make it
available later. Similarly debugging is much different if instead of having one arti-
fact (a micro-service or traditional monolithic app) developers need to deal with a
myriad of smaller pieces of code. New approaches may be needed to virtually as-
semble serverless pieces into larger units that are easier to understand and to reason
about.

Can legacy code be made to run serverless? The amount of existing (“legacy”)
code that must continue running is much larger than the new code created specif-
ically to run in serverless environments. The economical value of existing code
represents a huge investment of countless hours of developers coding and fixing
software. Therefore, one of the most important problems may be to what degree
existing legacy code can be automatically or semi-automatically decomposed into
smaller-granularity pieces to take advantage of these new economics.

Is serverless fundamentally stateless? As current serverless platforms are state-
less will there be stateful serverless services in future? Will there be simple ways
to deal with state? More than that: is serverless fundamentally stateless? Can there
be serverless services that have stateful support built-in with different degrees of
quality-of-service?

Will there be patterns for building serverless solutions? How do we combine
low granularity basic building blocks of serverless into bigger solutions? How are
we going to decompose apps into functions so that they optimize resource usage?
For example how do we identify CPU-bound parts of applications built to run in
serverless services? Can we use well-defined patterns for composing functions and
external APIs? What should be done on the server vs. client (e.g., are thicker clients
more appropriate here)? Are there lessons learned that can be applied from OOP
design patterns, Enterprise Integration Patterns, etc.?

18

Does serverless extend beyond traditional cloud platforms? Serverless may
need to support scenarios where code is executed outside of a traditionally defined
data center. This may include efforts where cloud is extended to include IoT, mo-
bile devices, web browsers, and other computing at the edge. For example “fog”
computing [12] has the goal of creating a system-level horizontal architecture that
distributes resources and services of computing, storage, control and networking
anywhere along the continuum from Cloud to IoT. The code running in the “fog”
and outside the Cloud may not just be embedded but virtualized to allow movement
between devices and cloud. That may lead to specific requirements that redefine
cost. For example, energy usage may be more important than speed.

Another example is running code that executes “smart contracts” orchestrating
transactions in BlockChain. The code that defines the contract may be deployed
and running on a network of Hyperledger fabric peer nodes [8], or in Ethereum
Virtual Machines [10] on any node of an Ethereum peer-to-peer network. As the
system is decentralized there is no Ethereum service or servers to run serverless
code. Instead, to incentivize Ethereum users to run smart contracts they get paid for
the gas consumed by the code, similar to fuel cost for an automobile but applied to
computing.

7 Conclusions

In this chapter we explored the genesis and history of serverless computing in detail.
It is an evolution of the trend towards higher levels of abstractions in cloud program-
ming models, and currently exemplified by the Function-as-a-Service (FaaS) model
where developers write small stateless code snippets and allow the platform to man-
age the complexities of scalably executing the function in a fault-tolerant manner.

This seemingly restrictive model nevertheless lends itself well to a number of
common distributed application patterns, including compute-intensive event pro-
cessing pipelines. Most of the large cloud computing vendors have released their
own serverless platforms, and there is a tremendous amount of investment and at-
tention around this space in industry.

Unfortunately, there has not been a corresponding degree of interest in the re-
search community. We feel strongly that there are a wide variety of technically chal-
lenging and intellectually deep problems in this space, ranging from infrastructure
issues such as optimizations to the cold start problem to the design of a composable
programming model. There are even philosophical questions such as the fundamen-
tal nature of state in a distributed application. Many of the open problems identified
in this chapter are real problems faced by practitioners of serverless computing to-
day and solutions have the potential for significant impact.

We leave the reader with some ostensibly simple questions that we hope will
help stimulate their interest in this area. Why is serverless computing important?
Will it change the economy of computing? As developers take advantage of smaller
granularities of computational units and pay only for what is actually used will that

Serverless Computing: Current Trends and Open Problems 19

change how developers think about building solutions? In what ways will serverless
extend the original intent of cloud computing of making hardware fungible and
shifting cost of computing from capital to operational expenses?

The serverless paradigm may eventually lead to new kinds of programming mod-
els, languages, and platform architectures and that is certainly an exciting area for
the research community to participate in and contribute to.

References

1. Aws lambda. URL https://aws.amazon.com/lambda/. Online; accessed December
1, 2016

2. S3 Simple Storage Service. URL https://aws.amazon.com/s3/. Online; accessed
December 1, 2016

3. Building Serverless Apps with Webtask.io. URL https://auth0.com/blog/
building-serverless-apps-with-webtask/. Online; accessed December 1,
2016

4. Aws re:invent 2014 — (mbl202) new launch: Getting started with aws lambda. URL https:
//www.youtube.com/watch?v=UFj27laTWQA. Online; accessed December 1, 2016

5. Bainomugisha, E., Carreton, A.L., Cutsem, T.v., Mostinckx, S., Meuter, W.d.: A survey on re-
active programming. ACM Comput. Surv. 45(4), 52:1–52:34 (2013). DOI 10.1145/2501654.
2501666. URL http://doi.acm.org/10.1145/2501654.2501666

6. Baldini, I., Castro, P., Cheng, P., Fink, S., Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah,
R., Suter, P.: Cloud-native, event-based programming for mobile applications. In: Proceedings
of the International Conference on Mobile Software Engineering and Systems, MOBILESoft
’16, pp. 287–288. ACM, New York, NY, USA (2016). DOI 10.1145/2897073.2897713. URL
http://doi.acm.org/10.1145/2897073.2897713

7. Bienko, C.D., Greenstein, M., Holt, S.E., Phillips, R.T.: IBM Cloudant: Database as a Service
Advanced Topics. IBM Redbooks (2015)

8. Learn Chaincode. URL https://github.com/IBM-Blockchain/learn-
chaincode. Online; accessed 1 December 2016

9. chalice: Python serverless microframework for aws. URL https://github.com/
awslabs/chalice. Online; accessed December 1, 2016

10. Ethereum. http://ethdocs.org/en/latest/introduction/what-is-
ethereum.html. URL http://ethdocs.org/en/latest/introduction/
what-is-ethereum.html. Online; accessed December 1, 2016

11. Fernandez, O.: Serverless: Patterns of Modern Application Design Using Microservices
(Amazon Web Services Edition). in preparation (2016). URL https://leanpub.com/
serverless

12. OpenFog Consortium. URL http://www.openfogconsortium.org/. Online; ac-
cessed December 1, 2016

13. Galactic Fog Gestalt Framework. URL http://www.galacticfog.com/. Online; ac-
cessed December 1, 2016

14. Cloud functions. URL https://cloud.google.com/functions/. Online; accessed
December 1, 2016

15. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau, A.C.,
Arpaci-Dusseau, R.H.: Serverless computation with openlambda. In: 8th USENIX Work-
shop on Hot Topics in Cloud Computing, HotCloud 2016, Denver, CO, USA, June 20-
21, 2016. (2016). URL https://www.usenix.org/conference/hotcloud16/
workshop-program/presentation/hendrickson

16. Openwhisk. URL https://github.com/openwhisk/openwhisk. Online; accessed
December 1, 2016

https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
https://auth0.com/blog/building-serverless-apps-with-webtask/
https://auth0.com/blog/building-serverless-apps-with-webtask/
https://www.youtube.com/watch?v=UFj27laTWQA
https://www.youtube.com/watch?v=UFj27laTWQA
http://doi.acm.org/10.1145/2501654.2501666
http://doi.acm.org/10.1145/2897073.2897713
https://github.com/IBM-Blockchain/learn-chaincode
https://github.com/IBM-Blockchain/learn-chaincode
https://github.com/awslabs/chalice
https://github.com/awslabs/chalice
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html
https://leanpub.com/serverless
https://leanpub.com/serverless
http://www.openfogconsortium.org/
http://www.galacticfog.com/
https://cloud.google.com/functions/
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://github.com/openwhisk/openwhisk

20

17. Cloud Foundry and Iron.io Deliver Serverless. URL https://www.iron.io/cloud-
foundry-and-ironio-deliver-serverless/. Online; accessed December 1,
2016

18. Introducing Lambda support on Iron.io. URL https://www.iron.io/introducing-
aws-lambda-support/. Online; accessed December 1, 2016

19. Sharable, Open Source Workers for Scalable Processing. URL https://www.iron.io/
sharable-open-source-workers-for/. Online; accessed December 1, 2016

20. Jira. URL https://www.atlassian.com/software/jira. Online; accessed De-
cember 5, 2016

21. LeverOS. https://github.com/leveros/leveros. URL https://github.
com/leveros/leveros. Online; accessed December 5, 2016

22. NGINX Announces Results of 2016 Future of Application Development and Delivery Survey.
URL https://www.nginx.com/press/nginx-announces-results-of-
2016-future-of-application-development-and-delivery-survey/.
Online; accessed December 5, 2016

23. Azure functions. URL https://functions.azure.com/. Online; accessed December
1, 2016

24. Openlambda. URL https://open-lambda.org/. Online; accessed December 1, 2016
25. Jira. URL https://www.openstack.org. Online; accessed December 5, 2016
26. Google Apps Marketplace. URL https://developers.google.com/apps-

marketplace/. Online; accessed December 1, 2016
27. Parse Cloud Code Getting Started. URL https://parseplatform.github.io/

docs/cloudcode/guide/. Online; accessed December 1, 2016
28. Sbarski, P., Kroonenburg, S.: Serverless Architectures on AWS With examples using

AWS Lambda. in preparation (2016). URL https://www.manning.com/books/
serverless-architectures-on-aws

29. Yan, M., Castro, P., Cheng, P., Ishakian, V.: Building a chatbot with serverless computing. In:
First International Workshop on Mashups of Things, MOTA ’16 (colocated with Middleware)
(2016)

30. Zappa: Serverless python web services. URL https://github.com/Miserlou/
Zappa. Online; accessed December 1, 2016

https://www.iron.io/cloud-foundry-and-ironio-deliver-serverless/
https://www.iron.io/cloud-foundry-and-ironio-deliver-serverless/
https://www.iron.io/introducing-aws-lambda-support/
https://www.iron.io/introducing-aws-lambda-support/
https://www.iron.io/sharable-open-source-workers-for/
https://www.iron.io/sharable-open-source-workers-for/
https://www.atlassian.com/software/jira
https://github.com/leveros/leveros
https://github.com/leveros/leveros
https://github.com/leveros/leveros
https://www.nginx.com/press/nginx-announces-results-of-2016-future-of-application-development-and-delivery-survey/
https://www.nginx.com/press/nginx-announces-results-of-2016-future-of-application-development-and-delivery-survey/
https://functions.azure.com/
https://open-lambda.org/
https://www.openstack.org
https://developers.google.com/apps-marketplace/
https://developers.google.com/apps-marketplace/
https://parseplatform.github.io/docs/cloudcode/guide/
https://parseplatform.github.io/docs/cloudcode/guide/
https://www.manning.com/books/serverless-architectures-on-aws
https://www.manning.com/books/serverless-architectures-on-aws
https://github.com/Miserlou/Zappa
https://github.com/Miserlou/Zappa

	Serverless Computing: Current Trends and Open Problems
	Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slominski, Philippe Suter
	1 Introduction
	1.1 Defining Serverless

	2 Evolution
	3 Architecture
	3.1 Survey of serverless platforms
	3.2 Benefits and drawbacks
	3.3 Current state of serverless platforms

	4 Programming model
	4.1 Ecosystem
	4.2 Tools and frameworks

	5 Use cases and workloads
	5.1 Event processing
	5.2 API composition
	5.3 API Aggregation to Reduce API Calls
	5.4 Flow control for Issue Tracking
	5.5 Discussion

	6 Challenges and open problems
	6.1 System level challenges
	6.2 Programming model and DevOps challenges
	6.3 Open Research Problems

	7 Conclusions
	References

